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6.8 U(1)∞: Local Gauge Transformations of the Electron Field; Fiber Bundles 

In the previous example, we applied a global phase transformation to the electron field and found that it 

leaves the Dirac Lagrangian density invariant. In other words, we get different mathematical 

descriptions for different orientations of the “electron-phase frame” (which marks the zero phase), but 

they are all equivalent (= describe the same physical reality) and are related by U(1) transformations. 

We say that the electron field is symmetric under a global gauge transformation. 

While it is not surprising that the absolute phase of the electron field is irrelevant, we would expect that 

the difference between two phase values, one at event ��� = (�� , �� , �� , 	�)� and one at event ��� =
(�� , �� , �� , 	�)�, is relevant. Surprisingly, this difference is not even well defined! In general, it depends 

on the space-time path chosen to connect the two events, that is, the phase difference is path 

dependent. This path dependence is exemplified by the Aharonov-Bohm effect, which relies on 

interference to probe the phase difference between two electron beams (of equal wavelength) 

propagating from point A to point B along two different paths (of equal length). In the absence of 

electromagnetism, the interference is constructive revealing equal phases for both paths, but when a 

magnetic field is applied between the two paths (without the field being present at the paths 

themselves), the interference pattern changes, demonstrating a path-dependent phase [RtR, Ch. 19.4]. 

How can we describe such a path-dependent phase mathematically? In general, path dependence arises 

in curved spaces. For example, imagine a sphere, 
�, with two tangent vectors at two different 

locations: ���(���) and ���(���). What is the angle between ��� and ���? To find out, we first have to 

parallel transport one vector to the other; only then can we measure the angle between the two. But 

this angle depends on the path that we chose to parallel transport one vector to the other [RtR, Ch. 

14.2]! It is the sphere’s curvature that causes this path dependence; it does not occur on a flat plane. 

We may be tempted to express the tangent vectors by an ordinary function of position on the sphere, 

��(��), but this doesn’t work. To allow for path dependence, we need the more general notion of a 

section of a fiber bundle, specifically, a section of the tangent bundle of 
� [RtR, Ch. 15.7]. This means 
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that at every point on the sphere, �� ∈ 
�, there exists an (a priori) independent tangent plane, ��, and 

the tangent vector at that point lives in this plane, �� ∈ ��. These tangent planes represent the fibers of 

the fiber bundle. In addition, we need a rule that tells us for any point on the sphere how to parallel 

transport a tangent vector at that point to a neighboring point. Such a rule is known as a connection 

because it connects the individual fiber spaces to each other. Together, the fibration and the connection 

provide the necessary flexibility to describe vectors in arbitrarily curved spaces. This is the idea of 

Riemannian geometry in a nutshell! See the Appendix “Metric, Connection, and Curvature in 2D 

Riemannian Geometry” for concrete examples. 

Now, let’s apply these ideas to our electron field. To permit a path-dependent phase difference, we 

upgrade 9(��) from an ordinary function to a section of a ℂ7 bundle over ℝ�,�. This means that at every 

event, �� ∈ ℝ�,�, there exists an (a priori) independent fiber space, ℂ7, and the value of the electron field 

at that event lives in this space, 9 ∈ ℂ7. We can think of each fiber as having its own local “electron-

phase frame” (which marks the zero phase). In contrast to our geometry example from above, the ℂ7 

fiber space is not a tangent space but a field space, a.k.a. an internal space. Next, we need to define a 

connection field on ℝ�,� that specifies how to “parallel transport” an electron-field value from one fiber 

to the next. This aspect will be discussed in detail in the next example. While our new description is 

more general and powerful (allowing for path-dependent phase differences), it is also highly redundant: 

a huge (actually, infinite) number of mathematical descriptions model the same physical reality. This 

may seem awkward, but it leads to important constraints, as we will see later! The transformations that 

relate all these equivalent descriptions are called local gauge transformations. 

The upper branch of the diagram shows the group of local U(1) gauge transformations acting on the 

electron field: 9′(��) = #�+2((3�)9(��). This field is given by a section of a ℂ7 bundle over ℝ�,�, 

abbreviated as 
(ℂ7 ↓ ℝ�,�) in the diagram. The group consists of a separate copy of U(1) at every 

event, �� ∈ ℝ�,�, that is, one copy of U(1) per fiber. Therefore, the total group is U(1)×U(1)× … ×U(1), 

which we can summarize as U(1)5. This group has infinitely many parameters, namely an & parameter 

at every event, that is, the group is parametrized by the function &(��). Consequently, this group is 

infinite dimensional (not just the representation, but the group itself)!  

What is the topology of this group? The topology of U(1)×U(1) is the product space of two circles, S1×S1, 

which is a torus, or more formally, a 2-torus. Thus, the full group U(1)5 must have the topology of an 

infinite-dimensional hypertorus! The corresponding Lie algebra is an infinite-dimensional vector space 

with functions, �(��), as its elements. A possible basis is given by the Dirac pulses ��>�� − !�?, where !� 

ranges over all possible events. Note that all basis generators commute with each other. 

Local U(1) gauge transformations are not a symmetry of the Dirac Lagrangian density. If we transform 

our toy Dirac Lagrangian density, it does not stay the same: ℒ′ = $#+2((A,3)9∗	%�#�+2(�A,3)9)/%� −
$#+2((A,3)9∗	%�#�+2(�A,3)9)/%� − C#+2((A,3)9∗#�+2((A,3)9 = $9∗	%9/%� + �%&/%�	9∗9 −
$9∗	%9/%�  �%&/%�	9∗9 − C9∗9 ≠ ℒ. There are two extra terms (shown in green), which vanish 

only if %&/%� = %&/%� = 0, that is, when &(�, �) is constant, taking us back to global gauge 

transformations. For local gauge transformations to make sense, they must simultaneously act on the 

electron field and the connection field. In the next example, we will discuss the connection field and 

how it transforms. 


