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6.10 U(1)∞: Application to the Electromagnetic Field Strength; Curvature 

In the following, we’ll calculate the difference between two electron-field values, one at event � and 

one at �, following two different paths connecting the events. To do that we use the covariant derivative 

introduced in the previous example. Then, we determine the mismatch between these two differences 

and normalize it to the local field value and the area enclosed by the two paths to obtain the curvature 

of the electron-field space. This curvature is closely related to the electromagnetic field! 

Let’s call the starting event for both paths ���. The first path leads a small distance � in the � direction, 

makes a 90° left turn and continues the same distance � in the � direction, whereas the second path 

goes first in the � direction and then in the � direction. Both paths end up at the same event ��	. Along 

the first leg of the first path, the field changes by 
��(���)�, where 
� is the covariant derivative in the 

� direction. Along the second leg of the first path, the field changes by 
��(��� + ���)�, where ��� + ��� is 

the end point of the first leg. Referring this change back to the starting event ���, we get 
�[�(���) +
��(���)�]�. Thus, the total difference along the first path is 
��(���)� + 
�[�(���) + 
��(���)�]� =
��(���)� + 
��(���)� + 
�
��(���)��. Now, doing the same calculation for the second path yields 


��(���)� + 
��(���)� + 
�
��(���)��. Subtracting the first difference from the second one, the 

terms linear in � cancel out and we are left with the mismatch �
�
�� − 
�
����� = �
�, 
�����. 

Dividing this by the enclosed area ��, yields ���� ∶= �
�, 
���, where we introduced ���, the ��-

component of the curvature tensor. Expanding the covariant derivatives in terms of the connection field, 

we get ���� = (�/�� + Γ�)(�/�� + Γ�)� − (�/�� + Γ�)(�/�� + Γ�)�. Multiplying out, applying the 

product rule, and simplifying yields ��� = �Γ�/�� − �Γ�/��. Note that the electron field, �(��), 
dropped out. Thus, the curvature depends only on the connection field Γ�(��), which characterizes the 

space in which the electron field lives! 

Next, we generalize the above analysis for an arbitrary pair of space-time indices to get the full 4×4 

curvature tensor ��� = [
� , 
�] = ��Γ� − ��Γ�, where  , ! ∈ {$, �, �, %} and �� ≔ �/� . Because this 
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tensor is antisymmetric, ��� = −���, only six of the sixteen tensor components are independent. 

Geometrically, this comes about because there are only six distinct orthogonal planes in 4D space (��, 

�%, %�, �$, �$, and %$) and because reversing the orientation of the path only changes the sign of the 

mismatch. Note that ��� = ��Γ� − ��Γ� is just the exterior derivative of Γ� and can be written more 

compactly as � = PΓ�, where P denotes the exterior derivative. (Yet another way to write the curvature 

tensor is � = ∇RR�	⨂	Γ� − [∇RR�	⨂	Γ�]T, where ⨂ denotes the tensor product.) Moreover, if we regard Γ�(��) as 

a one-form (= covector field), then �(��) is a two-form. See the Appendix “The Exterior Derivative in 3D 

Euclidean Space; Gradient, Curl, and Divergence”. 

How does the curvature tensor change under a local U(1) gauge transformation? The curvature tensor 

can be expressed in terms of the covariant derivate as ��� = 
�
� −
�
� and the covariant derivative 

transforms under the adjoint representation like 
�3 = +
�+-(. Thus, we have ���3 =
+
�+-(+
�+-( − +
�+-(+
�+-( = +(
�
� − 
�
�)+-( = +���+-(. Plugging in +, we find: ���3 =
+���+-( = 7->K;(��)���7>K;(��) = ���, that is, the curvature tensor remains invariant. 

To get a better understanding of what ��� represents, let’s consider the infinitesimal loop from ��� to ��	 

along the first path and then back from ��	 to ��� along the second path in reverse. “Parallel 

transporting” the electron field �(���) around such a loop with area �� located in the  !-plane results in 

�′(���) = �(���) + ���(���)�(���)�
�, which follows from the above mismatch calculation for the two 

alternative paths. Since Γ� is purely imaginary, so is ��� = ��Γ� − ��Γ� and the transported field value 

differs from the original one in phase only. In conclusion, ��� measures by how much the “electron-

phase frame” rotates when moving around a small loop in the  ! plane! 

Why is ��� called the curvature tensor? Let’s return to 2D geometry. If we parallel transport the tangent 

vector UV�(�V�) around a small loop and end up with UV�
3 (�V�) being rotated against UV�(�V�), then the 

surface near the point �V� is curved. The difference UV�
3 (�V�) − UV�(�V�), called holonomy, is proportional to 

the length |UV�| and the enclosed area �� and after normalization represents the curvature of the 2D 

surface! For a financial analog in which the opportunity for currency arbitrage is likened to curvature of 

“money space”, see https://arxiv.org/abs/1410.6753 and [PfF]. 

Now, we make the bold claim that the curvature tensor ��� is related to the electromagnetic field-

strength tensor 2��  (a.k.a. Faraday tensor)! Specifically, we claim that 2�� = ���/(8X), where X is the 

charge of the spinor field and we used units in which the speed of light is one. Does this make sense? 

Rewriting the relationship between curvature and connection, ��� = ��Γ� − ��Γ�, in terms of 2�� 	and 

Y� (= Γ�/(8X)) yields 2�� = ��Y� − ��Y�, which is just the relationship between field strength and 

potential well known from classical electrodynamics [TM, Vol. 3]! This relationship can be written more 

compactly as 2 = PARR�, where P is the exterior derivative. Note that the invariance of 2�� = ���/(8X) 
under U(1)B that we discussed above agrees with the fact that the electric and magnetic fields do not 

depend on our choice of gauge. See the lower branch of the diagram. 

In conclusion, the magnetic field can be interpreted as the rotation of the “electron-phase frame” when 

moving around an infinitesimal loop in a space-space plane. For example, the magnetic field in the % 

direction is JI = 2�� = ���/(8X). Similarly, the electric field can be interpreted as the rotation of the 

“electron-phase frame” when moving around a loop in a space-time plane. For example, the electric 

field in the � direction is H� = 2]� = �]�/(8X). 


