
E. Sackinger: Groups in Physics (Draft Version 0.2, January 20, 2024) 

 

151 

 

6.5 U(1): Infinite-Dimensional Representations; Circular Harmonics 

Let’s construct an infinite-dimensional representation of U(1) by starting with the 2-dimensional real 

representations that we discussed earlier and then upgrading the 2-dimensional representation space to 

the (infinite-dimensional) space of complex square-integrable functions of two real variables, �(�, �). 
This is analogous to that we did for SU(2) in three dimensions. (Our �(�, �) could represent a single-

particle wave function at one instant of time in a 2-dimensional world.) 

Our infinite-dimensional representation acts on these functions by applying the inverse of the 2-

dimensional real representation to the function’s argument: �′(��) = �(
��[�]	��), where �� = (�, �)� 

and 
 is the 2D rotation matrix (which we called �� in an earlier example). Using that 
��(�) = 
(−�), 

we find the explicit transformation of the argument as �� = � cos(−�) − � sin(−�) and �� =
� sin(−�) + � cos(−�) and thus the function transforms like 

��(�, �) = �(� cos� + � sin� ,−� sin� + � cos �). 
To write this as an operator � acting on the function �(�, �), that is, �′(��) = ��(��), we use our 

informal dot notation: � =	∙ (
��[�] 	 ∙	), where the first dot stands for the function’s name and the 

second dot for the function’s argument. Again, all this is analogous to that we did for the infinite-

dimensional representation of SU(2). See the upper branch of the diagram. 

To find the Lie-algebra elements of our infinite-dimensional representation, we first differentiate the 

transformed function with respect to �: ��/�� ∙ (−� sin � + � cos �) + ��/�� ∙ (−� cos � − � sin �). 
Then, we evaluate the result at � = 0 and multiply it by !, which yields ![��/�� ∙ � + ��/�� ∙ (−�)]. 
Finally, we split off the differential operator from the function to obtain the basis generator 

"# = −! $� �
�� − � �

��%. 
See the upper branch of the diagram. 
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Next, we switch from Cartesian to polar coordinates, which are more convenient in situations with 

rotational symmetry. Now, the arguments of the function are the radius and the angle: �9(:, 1) = �9(;�), 
where ;� = (:, 1)�, and the function transforms like 

�9�(:, 1) = �9(:, 1 − �). 
The corresponding operator can be written as �� =	∙ (	∙	, ∙ −�) or, maybe better, as �� =	∙ (
9��[�] 	 ∙	), 
where 
9  is the operator that adds � to the 1 component of the vector. (Note that, in contrast to the 

Cartesian case, 
9  cannot be written as a 2×2 matrix.) Using the operator ��, we can write the 

transformation as �9′(;�) = ���9(;�) = �9(
9��[�]	;�). The derivative of �9′(;�) with respect to � is −��9/�1. 

Evaluating this at � = 0, multiplying by !, and splitting off the differential operator yields the basis 

generator in polar coordinates: 

"0# = −! �
�1. 

See the lower branch of the diagram. 

In quantum mechanics, the (Hermitian) basis generators "# or "0# are the operators for the angular-

momentum observable. Their eigenfunctions are the wave functions with a definite angular momentum, 

which also provide an orthogonal basis for the representation space. The eigenvalues are the possible 

measurement outcomes, which also provide convenient labels for the basis functions. What is the 

explicit form of the eigenfunctions? Working in polar coordinates, the eigenequation is "0#Ψ=(;�) =>Ψ=(;�), where "0# = −!�/�1. Keeping in mind that the function �9(;�), and thus the eigenfunctions 

Ψ=(;�), must have the same value at 1 and 1 + 2@, we find the eigenfunctions Ψ=(:, 1) = A(:)37=B, 

where A(:) is an arbitrary function of :, and the eigenvalues are > = 0,±1,±2, etc. If we restrict the 

function’s argument to the unit circle, : = 1, we get 

Ψ=(1) = 37=B = cos>1 + ! sin>1. 
These functions form an orthogonal basis and are known as circular harmonics. 

All of this is quite familiar to us from our discussion of SU(2) representations on 3D functions. The main 

difference is that we are now restricted to 2D. The spherical harmonics that we had in 3D become 

circular harmonics in 2D. Thanks to the lower dimensionality, we can understand these basis functions in 

an intuitive way. The U(1) group elements represent rotations of a function on a circle. A small element 

of the u(1) algebra represents the change in this function due to a small rotation (= partial derivative in 

the angular direction times a small angle). The eigenfunctions of such an algebra element are those 

functions for which the small change is proportional to the function value itself. If the functions were on 

a line rather than on a circle, then these eigenfunctions would be exponential functions. Unfortunately, 

on a circle we cannot find real functions that have the desired “eigenproperty”. But we can find pairs of 

functions, such that a small change in one function is proportional to the value of the other function and 

vice versa. In other words, we can find complex eigenfunctions (= pairs of real functions) with imaginary 

eigenvalues (changes in one function are proportional to the other function). These functions are the 

circular harmonics: cos>1 + ! sin>1. Finally, if we multiply the imaginary eigenvalues with !, we get 

real numbers that can represent measurement outcomes in quantum mechanics. 


