6.6 U(1): Application to Fourier Series and Fourier Coefficients

The circular harmonics that we found in the previous example provide a basis into which we can expand complex functions on the unit circle, $\psi(\phi)$, where ϕ is the angle determining the point on the circle and $\psi(\phi)=\psi(\phi+2 \pi)$. The resulting complex coefficients, $\tilde{\psi}_{m}$, form an infinite vector, which, like the original periodic function, furnishes a representation of $\mathrm{U}(1)$.

Before we start, let's check if the basis functions from the previous example, $\Psi_{m}(\phi)=e^{i m \phi}$, where $m=0, \pm 1, \pm 2, \ldots$, are orthogonal and normalized. The Hermitian inner product of two such basis functions is $\int_{0}^{2 \pi} \Psi_{n}^{*}(\phi) \Psi_{m}(\phi) d \phi=\int_{0}^{2 \pi} e^{-i n \phi} e^{i m \phi} d \phi=\int_{0}^{2 \pi} e^{i(m-n) \phi} d \phi$. For $m \neq n$, this integral evaluates to zero, confirming that distinct basis functions are orthogonal. For $m=n$, the integral evaluates to 2π, revealing that the basis functions in their current form are not normalized. To make the basis orthonormal, which will become important momentarily, we redefine $\Psi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}$. Now, we have $\int_{0}^{2 \pi} \Psi_{n}^{*}(\phi) \Psi_{m}(\phi) d \phi=\delta_{n m}$, as desired. See the upper branch of the diagram.

Our goal is to express the periodic (square-integrable) function $\psi(\phi)$ in terms of these basis functions: $\psi(\phi)=\sum_{m} \tilde{\psi}_{m} \Psi_{m}(\phi)=\cdots+\tilde{\psi}_{-1} \Psi_{-1}(\phi)+\tilde{\psi}_{0} \Psi_{0}(\phi)+\tilde{\psi}_{+1} \Psi_{+1}(\phi)+\cdots$. This expansion is known as the Fourier series of $\psi(\phi)$ and the $\tilde{\psi}_{m}$ are the Fourier coefficients. The periodic function of a continuous variable, $\psi(\phi)$, is now represented by an infinite-dimensional vector with a discrete index, $\tilde{\psi}_{m}$. How can we find the coefficients $\tilde{\psi}_{m}$ for a given function $\psi(\phi)$? Simply projecting the function on the orthonormal basis does the trick! Specifically, taking the Hermitian inner product of $\psi(\phi)$ and the n-th basis function $\Psi_{n}(\phi)$ gives us the n-th Fourier coefficient: $\int_{0}^{2 \pi} \Psi_{n}^{*}(\phi) \psi(\phi) d \phi=$ $\int_{0}^{2 \pi} \Psi_{n}^{*}(\phi) \sum_{m} \tilde{\psi}_{m} \Psi_{m}(\phi) d \phi=\sum_{m} \tilde{\psi}_{m} \int_{0}^{2 \pi} \Psi_{n}^{*}(\phi) \Psi_{m}(\phi) d \phi=\sum_{m} \tilde{\psi}_{m} \delta_{n m}=\tilde{\psi}_{n}$. In the first step, we expanded the function $\psi(\phi)$ into its Fourier series; in the second step, we pulled the (constant) Fourier coefficients $\tilde{\psi}_{m}$ out of the integral; in the third step, we made use of the fact that the basis is orthonormal; and in the last step we multiplied out $\delta_{n m}$ (= identity matrix).

To summarize, the Fourier series of a periodic function is

$$
\psi(\phi)=\sum_{m=0, \pm 1, \cdots} \tilde{\psi}_{m} \Psi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} \sum_{m=0, \pm 1, \cdots} \tilde{\psi}_{m} e^{i m \phi}
$$

and the Fourier coefficients of that series are

$$
\tilde{\psi}_{m}=\int_{0}^{2 \pi} \psi(\phi) \Psi_{m}^{*}(\phi) d \phi=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} \psi(\phi) e^{-i m \phi} d \phi
$$

Now, let's investigate the representation that acts on the Fourier coefficients, which are collected in an infinite-dimensional vector. We know that the original function transforms like $\psi^{\prime}(\phi)=\psi(\phi-\theta)$ when rotated by θ. Calculating the Fourier coefficients of the transformed function tells us how the coefficients transform: $\tilde{\psi}_{m}^{\prime}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} \psi(\phi-\theta) e^{-i m \phi} d \phi=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} \psi(\varphi) e^{-i m(\varphi+\theta)} d \varphi=$ $\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi} \psi(\varphi) e^{-i m \varphi} e^{-i m \theta} d \varphi=\tilde{\psi}_{m} e^{-i m \theta}$. In the first step, we introduced a new variable $\varphi=\phi-\theta$; in the second step, we factored the exponential term such that in the third step we can isolate the original Fourier coefficients $\tilde{\psi}_{m}$. We conclude that the m-th Fourier coefficient gets multiplied by the phase factor $e^{-i m \theta}$ when rotated by θ. We can express this operation as a diagonal ($\infty \times \infty$) matrix acting on the Fourier-coefficient vector: $\tilde{\psi}^{\prime}=\widetilde{U} \tilde{\psi}$. See the lower branch of the diagram.

What about the corresponding Lie algebra? Differentiating $\tilde{\psi}_{m} e^{-i m \theta}$ with respect to θ, setting $\theta=0$, and multiplying by i reveals $\tilde{\psi}_{m}^{\prime}=m \tilde{\psi}_{m}$. This operation can also be expressed as a diagonal ($\infty \times \infty$) matrix acting on the Fourier-coefficient vector: $\tilde{\psi}^{\prime}=\tilde{J} \tilde{\psi}$. See the lower branch of the diagram.

Examining the \widetilde{U} and \tilde{J} matrices, we see that this representation is the direct sum of all irreducible representations of $U(1)$! We started out with two irreducible representations $(m= \pm 1)$ and constructed from them an infinite-dimensional representation on functions. We ended up finding all the irreducible representations of $U(1)$ hiding inside this infinite-dimensional representation.

The periodic function $\psi(\phi)$ can be visualized as a closed curve in the complex plane, ψ, parametrized by the angle $\phi=0 . .2 \pi$. For fun $\psi(\phi)$ could be chosen to outline a portrait of Joseph Fourier! Such a curve can also be expressed as the Fourier series $\psi(\phi)=\frac{1}{\sqrt{2 \pi}} \sum_{m} \tilde{\psi}_{m} e^{i m \phi}=\frac{1}{\sqrt{2 \pi}}\left(\tilde{\psi}_{-5} e^{-i 5 \phi}+\cdots+\tilde{\psi}_{0}+\cdots+\right.$ $\tilde{\psi}_{+5} e^{+i 5 \phi}$), where we assumed for the purpose of this example that eleven Fourier coefficients are sufficient. For $\phi=0$ we have $\psi(0)=\frac{1}{\sqrt{2 \pi}} \sum_{m} \tilde{\psi}_{m}=\frac{1}{\sqrt{2 \pi}}\left(\tilde{\psi}_{-5}+\cdots+\tilde{\psi}_{0}+\cdots+\tilde{\psi}_{+5}\right)$, which can be visualized as the end point of eleven concatenated pointers (= vectors), each one representing a complex Fourier coefficient. As we sweep ϕ from 0 to 2π, five of the pointers start to rotate clockwise and five of them counterclockwise, each one with its particular integer-valued angular frequency ($m=$ $-5, \ldots, 0, \ldots,+5$). The length of each pointer stays fixed. The end point of this rotating arrangement of pointers magically traces out the closed curve corresponding to $\psi(\phi)$! Watch the beautiful animations at https://www.3blue1brown.com exploiting this process to draw portraits of Joseph Fourier.

