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6.6 U(1): Application to Fourier Series and Fourier Coefficients 

 
The circular harmonics that we found in the previous example provide a basis into which we can expand 

complex functions on the unit circle, �(�), where � is the angle determining the point on the circle and 

�(�) = �(� + 2�). The resulting complex coefficients, �	
, form an infinite vector, which, like the 

original periodic function, furnishes a representation of U(1). 

Before we start, let’s check if the basis functions from the previous example, Ψ
(�) = �

�, where 

� = 0,±1,±2,…, are orthogonal and normalized. The Hermitian inner product of two such basis 

functions is � Ψ�∗(�)Ψ
(�) ��
��
� = � ��
���

� ����

� = � �
(
��)� ����
� . For � ≠ �, this integral 

evaluates to zero, confirming that distinct basis functions are orthogonal. For � = �, the integral 

evaluates to 2�, revealing that the basis functions in their current form are not normalized. To make the 

basis orthonormal, which will become important momentarily, we redefine Ψ
(�) =
�

√��
�

�. Now, 

we have � Ψ�∗(�)Ψ
(�) ��
��
� = !�
, as desired. See the upper branch of the diagram. 

Our goal is to express the periodic (square-integrable) function �(�) in terms of these basis functions: 

�(�) = ∑ �	
Ψ
(�)
 = ⋯+ �	��Ψ��(�) + �	�Ψ�(�) + �	$�Ψ$�(�) + ⋯. This expansion is known as 

the Fourier series of �(�) and the �	
 are the Fourier coefficients. The periodic function of a continuous 

variable, �(�), is now represented by an infinite-dimensional vector with a discrete index, �	
. How can 

we find the coefficients �	
 for a given function �(�)? Simply projecting the function on the 

orthonormal basis does the trick! Specifically, taking the Hermitian inner product of �(�) and the �-th 

basis function Ψ�(�) gives us the �-th Fourier coefficient: � Ψ�∗(�)�(�)��
��
� =

� Ψ�∗(�)∑ �	
Ψ
(�)
 ����
� = ∑ �	

 � Ψ�∗(�)Ψ
(�) ��

��
� = ∑ �	
!�

 = �	�. In the first step, we 

expanded the function �(�) into its Fourier series; in the second step, we pulled the (constant) Fourier 

coefficients �	
 out of the integral; in the third step, we made use of the fact that the basis is 

orthonormal; and in the last step we multiplied out !�
 (= identity matrix). 
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To summarize, the Fourier series of a periodic function is 

�(�) = D �	
Ψ
(�)

>�,��,⋯

= 1
√2� D �	
�

�


>�,��,⋯
 

and the Fourier coefficients of that series are 

�	
 = E �(�)Ψ
∗ (�)
��
�

�� = 1
√2�E �(�)��

� ����

�
. 

Now, let’s investigate the representation that acts on the Fourier coefficients, which are collected in an 

infinite-dimensional vector. We know that the original function transforms like �′(�) = �(� 8 *) when 

rotated by *. Calculating the Fourier coefficients of the transformed function tells us how the 

coefficients transform:  �	
B = �
√��� �(� 8 *)��

� ����

� = �
√��� �(G)��

(H$=) �G��

� =
�

√��� �(G)��

H��

= �G��
� = �	
��

=. In the first step, we introduced a new variable G = � 8 *; in 

the second step, we factored the exponential term such that in the third step we can isolate the original 

Fourier coefficients �	
. We conclude that the �-th Fourier coefficient gets multiplied by the phase 

factor ��

= when rotated by *. We can express this operation as a diagonal (∞3∞) matrix acting on 

the Fourier-coefficient vector: �	′ = %@�	. See the lower branch of the diagram. 

What about the corresponding Lie algebra? Differentiating �	
��

= with respect to *, setting * = 0, 

and multiplying by : reveals �	
B = ��	
. This operation can also be expressed as a diagonal (∞3∞) 

matrix acting on the Fourier-coefficient vector: �	′ = 56�	. See the lower branch of the diagram.  

Examining the %@ and 56 matrices, we see that this representation is the direct sum of all irreducible 

representations of U(1)! We started out with two irreducible representations (� = ±1) and constructed 

from them an infinite-dimensional representation on functions. We ended up finding all the irreducible 

representations of U(1) hiding inside this infinite-dimensional representation. 

The periodic function �(�) can be visualized as a closed curve in the complex plane, �, parametrized by 

the angle � = 0. .2�. For fun �(�) could be chosen to outline a portrait of Joseph Fourier! Such a curve 

can also be expressed as the Fourier series �(�) = �

√��
∑ �	

 �

� = 

�

√��
(�	�I��
I� +⋯+ �	� +⋯+

�	$I�$
I�), where we assumed for the purpose of this example that eleven Fourier coefficients are 

sufficient. For � = 0 we have �(0) = �

√��
∑ �	

 = �

√��
J�	�I +⋯+�	� +⋯+ �	$IK, which can be 

visualized as the end point of eleven concatenated pointers (= vectors), each one representing a 

complex Fourier coefficient. As we sweep � from 0 to 2�, five of the pointers start to rotate clockwise 

and five of them counterclockwise, each one with its particular integer-valued angular frequency (� =
85,… ,0,… ,+5). The length of each pointer stays fixed. The end point of this rotating arrangement of 

pointers magically traces out the closed curve corresponding to �(�)! Watch the beautiful animations 

at https://www.3blue1brown.com exploiting this process to draw portraits of Joseph Fourier. 

  


