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6.6 U(1): Application to Fourier Series and Fourier Coefficients
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The circular harmonics that we found in the previous example provide a basis into which we can expand
complex functions on the unit circle, Y (¢), where ¢ is the angle determining the point on the circle and
Y(p) = P(¢ + 2m). The resulting complex coefficients, 1,,,, form an infinite vector, which, like the
original periodic function, furnishes a representation of U(1).

Before we start, let’s check if the basis functions from the previous example, ¥,,,(¢p) = e™m® where
m=0,+1,+2, ..., are orthogonal and normalized. The Hermitian inner product of two such basis

. . 2n 2w i 2T i(m— -
functions is [ Wr(9)Wn(9) do = [, e"™Pe™Pdgp = [ e!m"™MP d¢. For m # n, this integral
evaluates to zero, confirming that distinct basis functions are orthogonal. For m = n, the integral
evaluates to 2w, revealing that the basis functions in their current form are not normalized. To make the

basis orthonormal, which will become important momentarily, we redefine ¥,,,(¢) = \/T_ne”"d’. Now,

we have f02n Y (D)W (P) ddp = 8, as desired. See the upper branch of the diagram.

Our goal is to express the periodic (square-integrable) function Y (¢) in terms of these basis functions:
Y(D) = T PP (P) = =+ + P_1W_1(9) + PoWo(#) + P11 W41 (@) + -+~ This expansion is known as
the Fourier series of 1 (¢p) and the 1, are the Fourier coefficients. The periodic function of a continuous
variable, Y (¢), is now represented by an infinite-dimensional vector with a discrete index, ,,,. How can
we find the coefficients 1, for a given function ¥(¢)? Simply projecting the function on the
orthonormal basis does the trick! Specifically, taking the Hermitian inner product of ¥/(¢) and the n-th

basis function W, (¢) gives us the n-th Fourier coefficient: fozn Yo ()Y () do =

21 - = 2, = = .
fo T[Lpn(d)) 2P (P) dp = Xmhm fo ”Lpn(¢)lpm(¢) d¢ = Lm ¥YmOnm = Pn- In the first step, we
expanded the function Y (¢) into its Fourier series; in the second step, we pulled the (constant) Fourier

coefficients l/)~m out of the integral; in the third step, we made use of the fact that the basis is
orthonormal; and in the last step we multiplied out §,,,, (= identity matrix).
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To summarize, the Fourier series of a periodic function is
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and the Fourier coefficients of that series are

21

P = . V()P () dp = Y(pe " dg.

1 21
\/27‘[.[0
Now, let’s investigate the representation that acts on the Fourier coefficients, which are collected in an
infinite-dimensional vector. We know that the original function transforms like ¥'(¢) = ¥ (¢ — ) when
rotated by 6. Calculating the Fourier coefficients of the transformed function tells us how the

—_ T 1 21 —i 1 21 _i
coefficients transform: ), = Efo Y(Pp — 0)e™™mPdgp = EIO Y(p)e ™M@+ d¢p =
1

NeG
the second step, we factored the exponential term such that in the third step we can isolate the original

Fourier coefficients l/)~m. We conclude that the m-th Fourier coefficient gets multiplied by the phase

foznlp(qo)e_im‘pe_ime de = ,,e™ In the first step, we introduced a new variable ¢ = ¢ — 6; in

factor e "¢ when rotated by 8. We can express this operation as a diagonal (o0 X o0) matrix acting on
the Fourier-coefficient vector: {' = U1. See the lower branch of the diagram.

What about the corresponding Lie algebra? Differentiating 1,,,e "™ with respect to 6, setting 8 = 0,
and multiplying by i reveals if),’n = mlf)m. This operation can also be expressed as a diagonal (o0 X )

matrix acting on the Fourier-coefficient vector: 1)’ = J1. See the lower branch of the diagram.

Examining the U and J matrices, we see that this representation is the direct sum of all irreducible
representations of U(1)! We started out with two irreducible representations (m = +1) and constructed
from them an infinite-dimensional representation on functions. We ended up finding all the irreducible
representations of U(1) hiding inside this infinite-dimensional representation.

The periodic function ¥/(¢) can be visualized as a closed curve in the complex plane, i, parametrized by
the angle ¢ = 0..2m. For fun (¢) could be chosen to outline a portrait of Joseph Fourier! Such a curve

can also be expressed as the Fourier series (¢) = \/%Zm Py, €M = \/%—n(llj_se_iS(p +ot g+t
P,set5®), where we assumed for the purpose of this example that eleven Fourier coefficients are
sufficient. For ¢ = 0 we have Y (0) = %Zmlﬁm = %(l[;_s + by e+ 1/;+5), which can be
visualized as the end point of eleven concatenated pointers (= vectors), each one representing a
complex Fourier coefficient. As we sweep ¢ from 0 to 2m, five of the pointers start to rotate clockwise
and five of them counterclockwise, each one with its particular integer-valued angular frequency (m =
—5,...,0, ..., +5). The length of each pointer stays fixed. The end point of this rotating arrangement of

pointers magically traces out the closed curve corresponding to Y (¢)! Watch the beautiful animations
at https://www.3bluelbrown.com exploiting this process to draw portraits of Joseph Fourier.
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