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6.2 U(1): Dual, Complex-Conjugate, Adjoint, and Product Representations
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When studying SU(2), we discussed dual representations (which act on dual vector spaces), complex-
conjugate representations (which act on complex-conjugated vector spaces), the adjoint representation
(which acts on the Lie algebra of the defining representation), and tensor-product representations
(which act on tensor-product spaces of two representations). What are the corresponding
representations for U(1)?

Let’s start with the dual representation. We know from SU(2) that given a transformation matrix, U, the
matrix of the dual representation is given by the transpose of its inverse, U~T. Applying this operation
to the defining representation e‘?, which is shown again in the upper branch of the diagram, yields @i =

u~! = e~ which is shown in the lower branch. Note that here U is a 1x1 matrix, that is, a scalar, and
thus the transpose operation has no effect. In conclusion, the dual of the defining representation is the
k = —1 representation. More generally, the dual of the k representation is the —k representation.

Unitary transformations satisfy Ut = U™, which can also be written as U* = U~1T. Therefore, the dual
of a unitary representation is also the complex-conjugate representation. Applied to the defining
representation, the complex-conjugate representationis &i = u* = e i,

But there is an important difference between U(1) and SU(2): The defining representation of SU(2) and
its complex-conjugate representation were equivalent, that is, there was a similarity transformation (=
change of basis of the representation space) that maps one to the other. In contrast, the defining
representation of U(1) and its complex-conjugate representation are inequivalent, that is, there is no
similarity transformation relating the two! The same is true for all irreducible representations of U(1).
Why? The similarity transformation, @ = sus™?, in which u and s are both scalars, doesn’t do anything:
il = u! We need at least a 2-dimensional representation for a similarity transformation to do something
interesting. In some sense, the lower dimensionality of U(1) makes it more “rigid” than SU(2) preventing
a relationship between the k and —k representations.
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If a representation is inequivalent to its complex conjugate, like the irreducible representations of U(1),
we call it complex; if a representation looks complex, but is equivalent to its complex conjugate, like the
defining representation of SU(2), we call it pseudoreal; finally, if a representation is equivalent to a
manifestly real representation, like the 3-dimensional representation of SU(2), we call it real [GTNut,
11.4].

What is the adjoint representation of U(1)? We know from SU(2) that the adjoint representation acts on
the Lie-algebra space by conjugation. But because u is a scalar, conjugation is the identity operation:
1=z foranyu = e'®.In other words, the adjoint representation is the trivial representation
labeled by k = 0! Again, the low dimensionality of U(1) results in a “rigidity”, which, in this case, keeps
the entire tangent space (= Lie algebra) in place. Later, when we discuss gauge theory, we will see that a
consequence of the adjoint representation of U(1) being trivial is that the electromagnetic field (or

photon) does not carry an electric charge!

z' =uzu~

Finally, let’s look at the tensor-product representations of U(1). All irreducible representations of U(1)
are one dimensional. Thus, taking the tensor product of any two of them yields again a 1-dimensional

representation. How does the product representation act on its representation space? If a first

imf and a second representation acts like w’ = wein?

im@ Wein@ - Zei(m+n)9

representation acts like v’ = ve , then the product
z = vw transforms like z’ = v'w’ = ve

representation labeled by k = m + n.

. Thus, the product representation is the
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