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2. Lie Groups, Lie Algebras, and Their Representations 

Before examining specific examples, we introduce the general ideas behind Lie groups, Lie algebras, and 

their representations. The above diagram helps us to get oriented. We start by giving a bird’s eye view 

of the subject, then we go into some more details in Sections 2.1 to 2.4.  

The basic idea behind a Lie group is to describe continuous symmetry transformations that depend on a 

couple of parameters. For example, all possible rotations of a 3D object parametrized by the rotation 

angles about the �, �, and �-axes form a Lie group. 

The basic idea behind a representation is to map abstract transformations to concrete matrices. For 

example, the group of all possible rotations of a 3D object can be mapped to the set of 3×3 rotation 

matrices. These matrices, in turn, act on vectors, which are the elements of the representation space. 

We say that these vectors furnish the representation of the group. In our example, the representation 

space consists of 3-component column vectors. 

Interestingly, Lie groups do not have just one, but many (usually infinitely many) representations! We 

will see many examples of that. 

The basic idea behind a Lie algebra is to provide a simplified (linearized) description of the Lie group by 

considering only small transformations. Surprisingly, almost no information is lost by going from the Lie 

group to the Lie algebra! As with the Lie group, the abstract Lie algebra can be made concrete by 

mapping it to a set of matrices. These matrices act on the same representation space as the matrices of 

the corresponding group representation. 

We can always go from a Lie-group representation to the corresponding Lie-algebra representation by 

differentiating (linearizing) it. Going from a Lie algebra back to the Lie group by integrating it is a bit 

more tricky because there can be more than one group for the same algebra. This backwards path is 

known as the exponential map. 

� � ��� ⋯ ���⋮ ⋱ ⋮��� ⋯ ���
� � ��, �, ⋯ , ��

����: � � �-matrices

� parameters: ��, �,⋯ , ���Lie Group

�-dimensional

manifold

��: vectors�� � ��

�� � ���� ⋯ ����⋮ ⋱ ⋮���� ⋯ ����
� �� ��, �, ⋯ , ��

����: � � �-matrices

� parameters: ��, �,⋯ , ����

��: vectors�̃� � ���̃

����: � � �-matrices (�)

� basis generators: ��, �,⋯ , ��
� � ���� � �� � ⋯� ����

�� , �� �  ����� �  ��� �⋯�  �����
Lie Algebra

!

!�

k-dimensional

representation

r-dimensional

representation

k-dimensional

representation

r-dimensional

representation

��: vectors�� � ��

linearize

at "

"

exponential

map

� � #�
#� $

%&'
� � "(

��: vectors�̃� � ���̃����: � � �-matrices (��)

�

�
�′

��

�̃
�̃′

��

�̃
�̃′

�

�
�′

��⋮��

�̃�⋮�̃�

��⋮��

�̃�⋮�̃�
� basis generators: ���, ��, ⋯ , ���
�� � ����� � ��� � ⋯� �����

��� , ��� �  ������ �  ���� �⋯�  ������

�-dimensional

linear space

with *·,·,

-

.



E. Sackinger: Groups in Physics (Draft Version 0.2, January 20, 2024) 

 

12 

 

The above diagram illustrates two different representations of the same Lie group: a �-dimensional 

representation in the upper branch and an �-dimensional one in the lower branch. The associated Lie 

algebra has two corresponding representations, which are shown below the group representations. We 

can identify the following items in the diagram: 

• The elements of the representation space. In the upper representation, these are the �-

dimensional column vectors � and in the lower representation, these are the �-dimensional 

column vectors �̃. 

• The elements of the Lie-group representation. In the upper Lie-group representation, these are 

the � � � matrices � and in the lower representation, these are the � � � matrices ��. The 

matrices � and ��  act on the vectors in the representation space by matrix-vector 

multiplication: �� and ���̃. These matrices perform transformations on the vectors. 

• The elements of the Lie-algebra representation. In the upper Lie-algebra representation, these 

are the � � � matrices � and in the lower representation, these are the � � � matrices ��. The 

matrices � and �� act on the vectors in the representation space by matrix-vector multiplication: 

�� and ���̃. These matrices are known as generators because they generate transformations. 

• The maps from the abstract Lie-group and Lie-algebra to the concrete representations. These 

maps must be such that the matrix representations “do the same thing” as the abstract group 

and algebra. More technically, the maps must preserve the algebraic structure of the Lie group 

and Lie algebra. Such maps are known as homomorphisms. 

The above diagram will serve as a template for the examples that follow. We will fill specific groups, 

matrices, and vectors into the boxes. We will also encounter representations that do not act on column 

vectors, but on objects such as spinors, tensors, functions, and fields. Nevertheless, we can still illustrate 

them using our diagram. 

Next, we’ll look at Lie groups, Lie-group representations, Lie algebras, and Lie-algebra representations 

one by one. Don’t worry if not everything makes sense. We will go through many examples that 

illustrate and clarify the theory. The idea is to learn by exploring examples! You may want to skim over 

the subsequent theory and come back for more details after you have gone through some of the 

examples.  
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2.1 Lie Groups 

 

A Lie group is a set with an infinite number of elements plus some structure that we’ll come to in a 

moment. The elements in the set are continuous, that is, they can be specified by � real parameters, 

where � depends on the Lie group in question. For example, think of the set of all possible rotations of a 

3D object. Any rotation can be specified by three real parameters (� � 3). These parameters could be 

the rotation angles about the �, �, and � axes, or they could be the orientation of the rotation axis in 

space (two parameters) and the rotation angle about this axis. 

In addition to being a set, the Lie group has a composition operation: given element - and element ℎ, 

we can form a new element 1 � - ∘ ℎ.  A good example for such an operation is the composition of two 

3D rotations: a first rotation ℎ by some angle about some axis is followed by a second rotation - by 

another angle about another axis. From now on, we’ll use the simpler notation 1 � -ℎ instead of 1 �
- ∘ ℎ. The composition operation must satisfy the following four group axioms: 

• Closure. The composition -ℎ must again be a member of the group. Example: the composition 

of two 3D rotations is another 3D rotation. 

• Associativity: 1(-ℎ) � (1-)ℎ. Example: the grouping of 3D rotations doesn’t matter. 

• Existence of an identity element " such that -" � "- � - for all -. Example: “no rotation” is 

the identity element of the group of rotations. 

• Existence of an inverse element -5� for all - such that --5� � -5�- � ". Example: rotating 

counterclockwise is the inverse operation of rotating clockwise (by the same angle and about 

the same axis). 

Do the elements of a Lie group commute? In general, they do not: -ℎ ≠ ℎ-. Again, 3D rotation provides 

a good example: we get two different outcomes when we rotate about one axis and then rotate about 

another axis versus when we do the same in the reversed order. But if both rotations are about the 

same axis, then the order doesn’t matter. So, while Lie groups in general are not commutative, some 

simple Lie groups are (e.g., 2D rotation or translation). 

Continuous symmetry transformations together with the operation of composition always form a Lie 

group. Examples of such transformations are translations, rotations, Lorentz boosts, and gauge 

transformations. We can think of these as coordinate transformations due to a frame change (passive 

transformation) or as coordinate transformations due to an action on the physical object itself 

described in a fixed frame (active transformation). 

Besides the discussed algebraic structure, Lie groups also possess a topological structure. Because the 

elements are smooth functions of � continuous parameters, each element in the group “lives” in a 

neighborhood of other elements. Globally, all the elements of the Lie group form a smooth �-dimesional 

manifold. You may visualize this manifold as a sphere and the group elements as the points that make 

up the sphere. However, this is just a crutch to help our intuition: there is no actual Lie group that has 

the topology of an ordinary sphere, 7. Unfortunately, actual Lie-group topologies are either too trivial 

to be representative (like the circle, 7�) or too high-dimensional to be useful for intuition building (like 

the 3-sphere, 78, which is a sphere in a 4-dimensional space).  
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2.2 Lie-Group Representations 

 

The elements of a Lie group are abstract objects. To make them more concrete, we map them to 

(invertible) square matrices, which act as linear transformations on the vectors in the representation 

space. In the diagram, the abstract group element - is mapped to the concrete matrix �, similarly, 9 is 

mapped to �, and so on. The matrix � acts on the vector � in the representation space by matrix-vector 

multiplication: �′ = ��. We call a map from the abstract group elements to the concrete matrices a 

representation of the Lie group (sometimes the matrices themselves or even the objects in the 

representation space are also referred to as a representation of the group). To deserve this name, the 

matrices must “behave in the same way” as the abstract group elements when composed together. In 

other words, the map must preserve the algebraic structure of the group. A map of this kind is called a 

group homomorphism. For example, we can represent abstract 3D rotations by a parametrized 3×3 

rotation matrix with the �, �, � rotation angles as parameters. 

Surprisingly, Lie groups do not have just one, but many (usually infinitely many) representations! 

Different representations often act on representation spaces with different numbers of dimensions. For 

example, 3D rotations can be represented not only in the familiar 3-dimensional space, by what is 

known as the defining or fundamental representation, but also in a 5-dimensional space (or any other 

odd-dimensional space)! This 5-dimensional representation is not just rotating a 3-dimensional 

subspace, leaving the remaining two dimensions invariant. It is a truly 5-dimensional transformation 

mixing up all the dimensions. A 5-dimensional representation of 3D rotation is furnished, for example, 

by the quantum-mechanical wave function of an electron in the d-orbital of an atom. Rotating the atom 

about its nucleus changes the five coefficients describing the composition of the d-wave in terms of its 

five basis wave functions. The diagram illustrates the fact that the same abstract group can have 

multiple matrix representations with a �- and an �-dimensional representation. 

It is important not to confuse the dimension � of the group (= the number of parameters) with the 

dimension � of its representation (= the number of basis vectors in the representation space). These are 

two entirely different things! For the defining representation of 3D rotations, they both happen to be 

three: three angles (� = 3) control all possible rotations in 3D space (� = 3). But that’s just a 

coincidence! In 2D, we need only one angle to specify all possible 2D rotations (� = 1, � = 2) and in 4D, 

we need six angles to specify all possible 4D rotations (� = 6, � = 4). Thus, the Lie group of ordinary 3D-

rotations, called SO(3), can be rather confusing when chosen as a first example. Later, when we are 

turning to specific groups, we will start with another group, namely SU(2), for which the dimension of 

the group and the dimension of the defining representation are different (� = 3, � = 2). 

Are the representations of a Lie group linear? Yes and No. The action of the matrix on the vectors in the 

representation space is certainly linear: ��� +�� = �(�� + �). But the dependence of the matrix on 

the parameters is usually nonlinear: �(��,⋯ , ��) +�(��� ,⋯ , ��� ) ≠ �(�� + ��� ,⋯ , �� + ��� ). To 

symbolize this nonlinear aspect, we use boxes with rounded corners for the Lie group and its 

representations in the diagram. Finally, we should mention that it is possible to generalize the idea of a 

representation to allow for a nonlinear action on the representation space, which is then known as a 

realization. But with many of the interesting transformations in physics being linear, especially in 

quantum mechanics, we focus here exclusively on representations. 
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2.3 Lie Algebras 

 

To get from a Lie group to the corresponding Lie algebra, we linearize the Lie group at the identity 

element " and provide a multiplication-like operation known as the Lie bracket, [., >], which measures 

the degree to which the composition of two group elements (near ") fails to commute. 

Linearization 

If we picture the Lie group as a sphere (keeping in mind the caveat pointed out earlier), then the Lie 

algebra corresponds to the tangent plane touching the sphere at the identity element ". More generally, 

the Lie algebra corresponds to the �-dimensional tangent space touching the �-dimensional Lie-group 

manifold at the identity element. This tangent space is an �-dimensional linear space (= vector space), 

that is, all its elements (= vectors or points) can be expressed as linear combinations of � basis vectors. 

To symbolize this linearity, we use rectangular boxes for the Lie algebra and its representations in the 

diagram. Note that the dimension of the Lie algebra, �, must match that of the Lie-group manifold. For 

example, the tangent space to a 2-dimensional sphere is a 2-dimensional plane.  

What do the elements of the Lie algebra represent? Group elements close to the identity " represent 

small transformations and because the origin of the Lie-algebra space touches the group manifold at ", 

Lie-algebra elements close to the origin can also be understood as small transformations. More 

accurately, a small Lie-algebra element represents the displacement resulting from a small 

transformation: the difference between the point in the representation space before and after the small 

transformation. Each displacement vector depends on the point in the representation space that the 

transformation acts on. Therefore, these displacement vectors form a vector field on the representation 

space. In summary, we can think of a small Lie-algebra element as 

• a point in the tangent space to the group manifold near the origin, 

• a small transformation (= a group element near the identity), 

• or a vector field (of small displacements) on the representation space. 

We will explain this again in more concrete terms when discussing matrix representations. 

Normally when we linearize something, we lose a lot of information. For example, if we know only the 

first derivative of the function 1(�) at � = 1, there is no way we can reconstruct the entire function. 

Interestingly, this is not the case for Lie groups! Knowing the Lie algebra, we can reconstruct (almost) 

everything there is to know about the Lie group. Why? Because the group structure lets us build up (= 

compose) large transformations by combining many small ones. If we know how to rotate a 3D object by 

one degree about all three axes, we can rotate the object in any way we want (in steps of one degree). 

For this reason, the elements of a Lie algebra are also known as generators: they can be used to 

generate large transformations. 

So, how do we get from the Lie-algebra elements (= generators) back to the Lie-group elements (= large 

transformations)? We need to perform some sort of integration. This results in the so-called exponential 

map. It is much easier to explain this map for a concrete matrix representation than for an abstract 

algebra and thus we defer this discussion until later. 
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The Lie algebra is a linear space and thus comes automatically equipped with the operations of addition 

and scalar multiplication. Given two Lie-algebra elements . and >, we can form the linear combination 

?. + @>, where ? and @ are scalars. What do these operations represent? If . corresponds to the small 

transformation - (= element of the Lie group) and > corresponds to the small transformation ℎ, then 

. + > corresponds to the small transformation composed of - and ℎ, that is, -ℎ. The addition in the Lie 

algebra describes, to first order, the composition of two small transformations in the Lie group. 

(Whereas composition does not commute in general, it does commute to first order for small 

transformations and thus can be represented by addition.) Similarly, if . corresponds to the small 

transformation - and ? is a whole number, then the product ?. corresponds to the composition of ? 

copies of the small transformation -, that is, -A. 

However, the linear structure of the tangent space is not enough to capture all of the information about 

the Lie group near the identity. For that, we need to add a multiplication-like operation, thus turning the 

vector space into an algebra. This new operation, the Lie bracket, measures the degree to which the 

composition of two Lie-group elements fails to commute. 

Lie Bracket 

How do we measure the degree to which the composition of two Lie-group elements - and ℎ fails to 

commute? We compute -5�ℎ5�-ℎ, that is, we apply the two transformations sequentially and then 

undo them the “wrong way” around (note that ℎ5�-5�-ℎ would always undo them perfectly: 

ℎ5�-5�-ℎ = "). If the two transformations commute, the result is the identity element ". For two small 

transformations (= group elements near the identity) that do not commute, the result is again the 

identity to first order, but there is a second order deviation. It is this second-order deviation that is 

measured by the Lie bracket [., >], where the Lie-algebra elements . and > correspond to the Lie-

group elements - and ℎ. 

The Lie bracket of two elements, [., >], is again an element of the Lie algebra, that is, the Lie algebra is 

closed under the bracket. This follows from the fact that the corresponding transformation -5�ℎ5�-ℎ is 

also again an element of the Lie group. The Lie bracket anticommutes, [., >] = −[>, .], reflecting the 

fact that the two small transformations -5�ℎ5�-ℎ and ℎ5�-5�ℎ- in the Lie group deviate from the 

identity in opposite ways. Finally, the Lie bracket is not associative [C, [., >]] ≠ [[C, .], >], but this 

inequality can be turned into an equality by adding one more term: 

DC, [., >]E = D[C, .],>E + D., [C, >]E. 
This formula is known as the Jacobi identity (easier to remember in its cyclic form: [C, [., >]] +
[., [>, C]] + [>, [C, .]] = 0). 

In summary, the Lie algebra has two operations: (i) linear combination, ?. + @>, which describes how 

two small transformations in the Lie group compose (-AℎH), and (ii) the Lie bracket, [., >], which 

describes how two small transformations in the Lie group fail to commute (-5�ℎ5�-ℎ). With these two 

operations, the Lie algebra captures almost everything there is to know about the Lie group. (Only some 

global features are left out, such as group components that are topologically separated from the identity 

component and the difference between a group and its covering group.) 
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2.4 Lie-Algebra Representations 

 

The elements of a Lie algebra are abstract objects, just like those of the Lie group. To make them more 

concrete, we represent them by square matrices, which act linearly on the vectors in the representation 

space. In the diagram, the abstract algebra element . is mapped to the matrix !, similarly, � is mapped 

to �, and so on. The matrix � acts on the vector � in the representation space by matrix-vector 

multiplication: �′ = ��. We call a map from the abstract algebra elements to the concrete matrices a 

representation of the Lie algebra (sometimes the matrices themselves are also referred to as a 

representation of the algebra). For every �-dimensional representation of a Lie group, there is a 

corresponding �-dimensional representation of the Lie algebra. (Note: To avoid introducing too many 

symbols, we wrote in the diagram �′ = �� for the algebra action and �′ = �� for the group action, 

although the two �′ are different.) 

Linearization and Exponential Map 

How do we find the Lie-algebra representation for a given Lie-group representation? We take the partial 

derivative of the group matrix �(��, ⋯ , ��) with respect to each of the � parameters �� and evaluate 

the resulting matrices at �� = 0, where we assumed that �� = 0 parametrizes the identity matrix, 

�(0,⋯ , 0) = I: 

�� = #�(��,⋯ , ��)
#��

J
%K&⋯&%L&'

 

The resulting � matrices, ��, are the basis generators of the Lie algebra. A general element � of the Lie 

algebra, known as a generator, is a linear combination of these basis generators: � = ���� +⋯+ ����. 

(Caution: the terms generator and basis generator are often not clearly distinguished in the literature.) 

The specific basis generators that we obtain from the above procedure depend on the parametrization 

of the group elements, but the linear space spanned by the basis generators is always the same. We 

may normalize the basis generators to suit a particular purpose (e.g., particular eigenvalues or structure 

constants). Note that a �-dimensional representation is given by � × � matrices and thus the linear 

space appears to have � dimensions, but in truth, the Lie algebra is constrained to an �-dimensional 

subspace singled out by the � basis generators. 

Given a small matrix M� in the Lie algebra, we can construct the corresponding small transformation 

� = I + M� in the Lie group, where I is the identity matrix and M is a small number. To obtain the large 

transformation corresponding to the full matrix � we set M = 1/O and repeat the small transformation 

O times: (I + M�)P. In the limit of a large O, this leads to the transformation matrix 

� = limP→U VI + �
OW

P
, 

which evaluates to the matrix exponential 

� = "( ∶= I + � + �
	� + �

Z	�8 + �
[	�[ +⋯. 

Thus, for each matrix � in the Lie algebra, we can construct a large transformation "( in the Lie group. 

We can generalize this result by considering all Lie-algebra elements in the linear subspace spanned by 
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� (elements in the “direction” of �). For each subspace �� in the Lie algebra, we get a one-parameter 

set of transformation matrices �(�) = "(\ in the Lie group, where � is the parameter. This is the 

exponential map that takes us from the Lie algebra back to the Lie group. Let’s check if this is consistent 

with what we said before: If we choose the parameter to be small, � = M, and expand the exponential to 

first order, we find � = "(] = I + M�, as expected. Moreover, taking the derivative of "(\ with respect 

to � and evaluating at � = 0 indeed yields the generator �. 

Let’s visualize the exponential map: picture the Lie group as a sphere (you know the caveat) with the 

south pole representing the identity element. Moreover, imagine a knob for adjusting the parameter �. 

When the knob is set to zero, a light spot appears at the south pole of the sphere. This spot represents 

the identity transformation. When we turn the knob, the spot moves away from the south pole 

following a smooth arc. This trajectory represents the one-parameter set of transformations associated 

with the chosen generator (= Lie-algebra element). If we pick another (linearly independent) generator, 

we get another trajectory on the sphere and so on. 

So far, we have recovered only a one-dimensional subset of the complete Lie group. How can we get the 

full �-parameter set of transformations? Two strategies come to mind: Linearly combine all � basis 

generators to obtain a general Lie-algebra element, ���� + �� ⋯+ ����, and then exponentiate it:  

�(��, �,⋯ , ��) = " K̂\K_^̀ \`_⋯_ L̂\L , 
where �� are the basis generators and �� are the coordinates of the general Lie-algebra element this 

basis. Alternatively, exponentiate each one of the � basis generators separately and multiply the 

resulting � one-parameter transformation matrices together (thus composing the transformations): 

�(��� , �� ,⋯ , ��� ) = " K̂\Ka ∙ "^̀ \à ∙ ⋯ ∙ " L̂\La . 
At first glance, the two formulas may seem to give the same result, but in general they do not. They 

agree only if all the basis generators commute, [��, ��] = 0, otherwise they are related by the Baker-

Campbell-Hausdorff formula: 

"("c = "(_c_K
`	[(,c]_ K

K`	[(,[(,c]]5 K
K`	Dc,[(,c]E_	⋯. 

Moreover, we can combine the two strategies by exponentiating arbitrary (but complementary) 

subspaces of the algebra (e.g., " K̂\Kaa_^̀ \àa ∙ ⋯ ∙ " L̂\Laa). Finally, we can arbitrarily permute the 

exponential factors (e.g., "^̀ \àaa ∙ " K̂\Kaaa ∙ ⋯ ∙ " L̂\Laaa). Thus, given a set of basis generators, there are 

many different ways to construct the parametrized transformation matrix. The difference between the 

resulting matrices is their parametrization (hence the distinction between �, �′, etc.). 

The elements of a Lie group can be parametrized in many different ways. We can think of this as putting 

different (curved) coordinate systems on the group manifold. If we start with a Lie-group representation 

parametrized in some way, derive the Lie algebra from it (as discussed earlier), and then recover the Lie 

group from some set of basis generators (as discussed above), we may not end up with the 

parametrization that we originally started with. For this reason, we distinguished between the original 

parametrization �(��, ⋯ , ��) and the parametrization �(��,⋯ , ��) after exponentiation. It may even 

happen that after exponentiation, we end up with a representation of a slightly different Lie group, 

namely the covering Lie-group. We will see examples of this later. 
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Vector Fields and Integral Curves 

It is instructive to look at the Lie-algebra elements from a somewhat different viewpoint. We know that 

the generator M� corresponds to the small transformation I + M�. Acting with this transformation on 

the vector � in the representation space and writing the result as the original vector plus a small 

differential vector yields �′ = � + d� = (I + M�)�. After subtracting � from both sides, we obtain d� =
M��. Thus, a particular generator M� maps a vector � to a small displacement d� located at �. In other 

words, each M� defines a vector field on the representation space. To visualize this field, imagine a little 

arrow at every point of the representation space. Each arrow indicates where the point at its root moves 

to under the small transformation. For example, if the transformation is a small 3D rotation, the vector 

field consists of little arrows swirling cylindrically around the axis of rotation; arrows closer to the axis 

are shorter, arrows farther form the axis are longer. For each axis orientation, that is, for each generator 

M�, there is a different vector field. 

Trajectories through the representation space that “follow” the vectors of the field are known as flow 

lines or integral curves. We can write such a trajectory as a vector that depends on a parameter: �(�). 

To make sure that the vectors of the field, M��, are tangent to this trajectory, we require 

d�(�)
d� = ��(�). 

Given a starting point �(0), the solution of this first-order differential equation is 

�(�) = "(\�(0). 
Note that �(�) = "(\, which acts on the starting point, is just the one-parameter set of transformation 

matrices that we discussed earlier! We can thus think of the exponential map as taking in a vector field 

and assembling it into integral curves. 

What happens if we act with the transformation "(\ (= Lie-group element) on the vector field 

associated with � (= Lie-algebra element)? Every arrow of the field gets moved from location � to "(\� 

and gets reoriented from �� to "(\(��). What arrow was at the location "(\� before the 

transformation? The old arrow there was �("(\�). But this is the same arrow as the one that is there 

now, namely "(\(��), because "(\ = I + �� + K
`	�� +⋯ and � commute! So, every arrow in the 

field moves to a new location and changes its orientation, but the field as a whole stays the same: it 

remains invariant. For example, imagine rotating the vector field of rotation described above: it remains 

invariant. In summary, the vector field associated with � stays invariant under the transformations 

generated by �. 

Eigenvectors and Eigenvalues of the Generators 

Given a generator �, what can we say about the associated vector field? Much of the relevant 

information is contained in the eigenvectors and eigenvalues of the matrix �! 

The eigenvectors specify the directions in which the flow of the vector field comes out of or goes into 

the origin (depending on the sign of the corresponding eigenvalue). The eigenvalues specify the 

magnitude of the flow in the direction of the corresponding eigenvectors. For example, the 2D 

generator � = e0 1
1 0f has eigenvectors e11f and e 1

−1f with eigenvalues 1 and −1, respectively, 
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describing a vector field that flows out of the origin along the � = � diagonal and into the origin along 

the � = −� diagonal. Integrating this vector field yields the transformation "(\ = ecosh� sinh�
sinh� cosh�f. 

For an illustration of these flows in the 3D case, see [RtR, Fig. 13.10]. If the sum of all the eigenvalues (= 

trace of �) is zero, then the in- and outgoing flows add up to zero, that is, there are no sources or sinks 

in the vector field: it is divergence free. 

If the eigenvectors and/or eigenvalues are complex, the flow of the vector field does not come out of or 

go into the origin, instead, it goes around the origin. For example, the generator � = e0 −1
1 0 f has the 

complex eigenvectors el1f and e l
−1f with eigenvalues l and −l, respectively, describing a circular flow 

around the origin. Integrating this vector field yields the transformation "(\ = ecos� −sin�
sin � cos� f. 

Lie Bracket, Commutator, and Structure Constants 

What does the abstract Lie-bracket operation correspond to in a matrix representation? To find out, we 

determine the amount by which two small transformations, � and O, fail to commute, that is, we check 

by how much the matrix product �5�O5��O deviates from the identity. First, we express the two 

small transformations in terms of their generator matrices, � and m, up to second order: 

� = I + M� + �
	M�,					O = I + Mm + �

	Mm. 
Then, we plug this into �5�O5��O, expand, simplify, and ignore terms beyond second order, which 

leads (after some work) to  

�5�O5��O = I + M(�m − m�) +⋯ 

It is the second-order deviation from perfect commutation that defines the Lie bracket. Thus, the Lie 

bracket is represented by the matrix commutator: [�, m] = �m − m�. 

From the matrix expression [�, m] = �m − m�, it is evident that the commutator (just like the abstract 

Lie bracket) anti-commutes: [�, m] = −[m, �]. Closure implies that the commutator of any two elements 

is again an element of the Lie algebra. Therefore, we can write the commutator of any two basis 

generators as a linear combination of the full set of basis generators: 

D��, ��E = n  �����
�

�&�
. 

The coefficients  ���  are known as the structure constants of the Lie algebra. Given the structure 

constants in a particular basis, we have everything we need to calculate any commutator in this basis. 

Lie algebras are considered to be isomorphic if they have the same structure constants in some basis. 

(For a cool visualization of structure constants, see  http://visuallietheory.blogspot.com/2012/09/.) 

Of course, there is a lot more to say about Lie groups, Lie algebras, and their representations, but this is 

all we need to get started. Now, let’s look at some concrete examples!   


