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9.3 Symmetry and Conservation in Quantum Mechanics 

 
In quantum mechanics, the state of a system is given by the complex vector �, which is an element of 

Hilbert space. (More accurately, a physical state is given by an equivalence class of vectors related by  

phase factors.) This state evolves according to Schrödinger’s equation ���/�� = ��, where � is the 

Hamiltonian, a Hermitian operator (matrix) acting on Hilbert space, and we chose units for which ℏ = 1. 

Integrating this differential equation yields the explicit time evolution ���� = �����0�, where ��� =

����� is a unitary operator and we assumed that � is time independent. The matrix exponential is to be 

interpreted as the power series ����� = � − ��� + �

�
�−����� + ⋯. 

What is a symmetry transformation? Let’s define the time-independent unitary operator ���� that 

transforms the original state to the primed state like �′ = �����, where � is the transformation 

parameter. Now, if the transformed state evolves exactly in sync to the original state, meaning �′��� =

�������� for all times �, then ���� is a symmetry transformation. Alternatively, we can say that if 

evolving the initial state first and transforming it second, ��������, results in the same final state as 

transforming it first and evolving it second, ��������, for all times �, then ���� is a symmetry 

transformation. In other words, a symmetry transformation leaves the law of time evolution unaffected. 

Mathematically, we have ������� = ������� or, equivalently, [����, ���] = 0 for all �, where [	∙	, ∙	] 

is the commutator bracket. 

Summary: a symmetry transformation commutes with the time evolution (left side of the diagram). 

Making use of ��� = �����, the condition [����, ���] = 0 for all � can also be written as [����, �] =

0. This can be demonstrated by expanding the matrix exponential into its power series. Furthermore, 

the unitary transformation can be written as ���� = ���#$, where % is the generator of the 

transformation (times �). Now, the condition [����, �] = 0 can be rewritten as [%,�] = 0. Again, this 

can be demonstrated by expanding the matrix exponential into its power series ���#$ = � − �%� +
�

�
�−�%��� + ⋯. 

� is a Symmetry: % is Conserved:

� � ,  � = 0

[%,�] = 0[%,�] = 0

Generator % Observable %

� %

��
= 0

��0� ����
 � = �����

�′(0) �′(�)
 � = �����

� � = ���#$� � = ���#$

�(0) �(�)

�& 0 %�(0) �& � %�(�)

 � = �����

% %

1



E. Sackinger: Groups in Physics (Draft Version 0.2, September 30, 2023) 

 

186 

 

Summary: the generator of a symmetry transformation commutes with the Hamiltonian (left side of the 

diagram). 

What is a conserved quantity? A quantum-mechanical observable is represented by an operator, %. The 

expectation value of this observable is given by 〈%〉 = �&%�. Knowing how � evolves in time, we can 

calculate how this expectation value evolves in time (from time 0 to time �): 〈%���〉 = ����&%���� =

[�����0�]&%[�����0�] = ��0�&�)���%�����0�. For this value to be conserved (= to be time 

independent), we need �)���%��� = % or, equivalently, [%,���] = 0 for all �. It can be shown that 

this condition not only conserves the expectation value but the entire probability distribution of the 

observable. Finally, making use of ��� = �����, the condition [%, ���] = 0 for all � can be rewritten as 

[%,�] = 0. 

Summary: a conserved observable commutes with the Hamiltonian (right side of the diagram).  

How are symmetry and conservation related? From the above arguments, we conclude: if ���� is a 

symmetry transformation, then the associated generator % is a conserved observable, meaning that the 

expectation value 〈%���〉 = ����&%���� and the probability distribution of the observable are time 

independent. Conversely, if % is a conserved observable, then taking the exponential map yields a 

symmetry transformation, ���� = ���#$.  

To understand this better, let’s assume that, in addition to [%,�] = 0, the initial state ��0� is an 

eigenstate of the conserved observable %, that is, ��0� = *� for some �, where %*� = +�*�. Because 

[%,�] = 0, this state is also an eigenstate of the Hamiltonian �, that is, �*� = ,�*�. For this special 

state the observable % has a definite value, namely +�, and the energy has a definite value, namely ,�. 

Both values are time independent (= conserved). In this case, the symmetry transformation ���� =

���#$ simply multiplies the state with a phase factor, namely �′�0� = ���#$��0� = ���-.$��0�, and 

likewise the time evolution ��� = ����� multiplies the state with another phase factor, namely ���� =

�������0� = ���/.���0�. Clearly, the two phase factors commute. Note that the symmetry 

transformation changes the phase of the state by Δ1 = +�Δ� and therefore +� is the rate of change of 

the phase with respect to �. In other words, for these definite-value states, we can interpret the value of 

the conserved observable as the rate of change of the quantum-mechanical phase with respect to the 

parameter of the associated symmetry transformation [FLP, Vol. III, Ch. 17]. 

For example, the rate of change of the quantum-mechanical phase with respect to the angle of rotation 

about the 2 axis is the angular momentum about the 2 axis (assuming the state has a definite angular 

momentum about the 2 axis). Similarly, the rate of change of the phase with respect to the amount of 

translation along the 3 axis is the momentum in the 3 direction (assuming the state has a definite 

momentum in the 3 direction). Note that phase change per distance is a wavenumber and thus has the 

right dimension for momentum (ℏ = 1). Finally, the rate of change of the phase with respect to the 

amount of time translation is the energy (assuming the state has a definite energy). Note that phase 

change per time interval is an (angular) frequency and thus has the right dimension for energy. 


