9.3 Symmetry and Conservation in Quantum Mechanics

S is a Symmetry:

$\langle G\rangle$ is Conserved:

$\frac{d\langle G\rangle}{d t}=0$

$[G, H]=0$

In quantum mechanics, the state of a system is given by the complex vector ψ, which is an element of Hilbert space. (More accurately, a physical state is given by an equivalence class of vectors related by phase factors.) This state evolves according to Schrödinger's equation $i \partial \psi / d t=H \psi$, where H is the Hamiltonian, a Hermitian operator (matrix) acting on Hilbert space, and we chose units for which $\hbar=1$. Integrating this differential equation yields the explicit time evolution $\psi(t)=U(t) \psi(0)$, where $U(t)=$ $e^{-i H t}$ is a unitary operator and we assumed that H is time independent. The matrix exponential is to be interpreted as the power series $e^{-i H t}=I-i H t+\frac{1}{2}(-i H t)^{2}+\cdots$.

What is a symmetry transformation? Let's define the time-independent unitary operator $S(\lambda)$ that transforms the original state to the primed state like $\psi^{\prime}=S(\lambda) \psi$, where λ is the transformation parameter. Now, if the transformed state evolves exactly in sync to the original state, meaning $\psi^{\prime}(t)=$ $S(\lambda) \psi(t)$ for all times t, then $S(\lambda)$ is a symmetry transformation. Alternatively, we can say that if evolving the initial state first and transforming it second, $S(\lambda) U(t) \psi$, results in the same final state as transforming it first and evolving it second, $U(t) S(\lambda) \psi$, for all times t, then $S(\lambda)$ is a symmetry transformation. In other words, a symmetry transformation leaves the law of time evolution unaffected. Mathematically, we have $U(t) S(\lambda)=S(\lambda) U(t)$ or, equivalently, $[S(\lambda), U(t)]=0$ for all t, where $[\cdot, \cdot]$ is the commutator bracket.

Summary: a symmetry transformation commutes with the time evolution (left side of the diagram).
Making use of $U(t)=e^{-i H t}$, the condition $[S(\lambda), U(t)]=0$ for all t can also be written as $[S(\lambda), H]=$ 0 . This can be demonstrated by expanding the matrix exponential into its power series. Furthermore, the unitary transformation can be written as $S(\lambda)=e^{-i G \lambda}$, where G is the generator of the transformation (times i). Now, the condition $[S(\lambda), H]=0$ can be rewritten as $[G, H]=0$. Again, this can be demonstrated by expanding the matrix exponential into its power series $e^{-i G \lambda}=I-i G \lambda+$ $\frac{1}{2}(-i G \lambda)^{2}+\cdots$.

Summary: the generator of a symmetry transformation commutes with the Hamiltonian (left side of the diagram).

What is a conserved quantity? A quantum-mechanical observable is represented by an operator, G. The expectation value of this observable is given by $\langle G\rangle=\psi^{\dagger} G \psi$. Knowing how ψ evolves in time, we can calculate how this expectation value evolves in time (from time 0 to time t): $\langle G(t)\rangle=\psi(t)^{\dagger} G \psi(t)=$ $[U(t) \psi(0)]^{\dagger} G[U(t) \psi(0)]=\psi(0)^{\dagger} U^{-1}(t) G U(t) \psi(0)$. For this value to be conserved (= to be time independent), we need $U^{-1}(t) G U(t)=G$ or, equivalently, $[G, U(t)]=0$ for all t. It can be shown that this condition not only conserves the expectation value but the entire probability distribution of the observable. Finally, making use of $U(t)=e^{-i H t}$, the condition $[G, U(t)]=0$ for all t can be rewritten as $[G, H]=0$.

Summary: a conserved observable commutes with the Hamiltonian (right side of the diagram).
How are symmetry and conservation related? From the above arguments, we conclude: if $S(\lambda)$ is a symmetry transformation, then the associated generator G is a conserved observable, meaning that the expectation value $\langle G(t)\rangle=\psi(t)^{\dagger} G \psi(t)$ and the probability distribution of the observable are time independent. Conversely, if G is a conserved observable, then taking the exponential map yields a symmetry transformation, $S(\lambda)=e^{-i G \lambda}$.

To understand this better, let's assume that, in addition to $[G, H]=0$, the initial state $\psi(0)$ is an eigenstate of the conserved observable G, that is, $\psi(0)=\phi_{i}$ for some i, where $G \phi_{i}=g_{i} \phi_{i}$. Because $[G, H]=0$, this state is also an eigenstate of the Hamiltonian H, that is, $H \phi_{i}=E_{i} \phi_{i}$. For this special state the observable G has a definite value, namely g_{i}, and the energy has a definite value, namely E_{i}. Both values are time independent ($=$ conserved). In this case, the symmetry transformation $S(\lambda)=$ $e^{-i G \lambda}$ simply multiplies the state with a phase factor, namely $\psi^{\prime}(0)=e^{-i G \lambda} \psi(0)=e^{-i g_{i} \lambda} \psi(0)$, and likewise the time evolution $U(t)=e^{-i H t}$ multiplies the state with another phase factor, namely $\psi(t)=$ $e^{-i H t} \psi(0)=e^{-i E_{i} t} \psi(0)$. Clearly, the two phase factors commute. Note that the symmetry transformation changes the phase of the state by $\Delta \varphi=g_{i} \Delta \lambda$ and therefore g_{i} is the rate of change of the phase with respect to λ. In other words, for these definite-value states, we can interpret the value of the conserved observable as the rate of change of the quantum-mechanical phase with respect to the parameter of the associated symmetry transformation [FLP, Vol. III, Ch. 17].

For example, the rate of change of the quantum-mechanical phase with respect to the angle of rotation about the z axis is the angular momentum about the z axis (assuming the state has a definite angular momentum about the z axis). Similarly, the rate of change of the phase with respect to the amount of translation along the x axis is the momentum in the x direction (assuming the state has a definite momentum in the x direction). Note that phase change per distance is a wavenumber and thus has the right dimension for momentum ($\hbar=1$). Finally, the rate of change of the phase with respect to the amount of time translation is the energy (assuming the state has a definite energy). Note that phase change per time interval is an (angular) frequency and thus has the right dimension for energy.

