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9.3 Symmetry and Conservation in Quantum Mechanics
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In quantum mechanics, the state of a system is given by the complex vector i, which is an element of
Hilbert space. (More accurately, a physical state is given by an equivalence class of vectors related by
phase factors.) This state evolves according to Schréddinger’s equation idy /dt = Hy, where H is the
Hamiltonian, a Hermitian operator (matrix) acting on Hilbert space, and we chose units for which A = 1.
Integrating this differential equation yields the explicit time evolution ¥(t) = U(t)1(0), where U(t) =
et js 3 unitary operator and we assumed that H is time independent. The matrix exponential is to be
interpreted as the power series e *H! = | — iHt + 1(—iHt)? + -,

What is a symmetry transformation? Let’s define the time-independent unitary operator S(1) that
transforms the original state to the primed state like ¥' = S(A1)y, where A is the transformation
parameter. Now, if the transformed state evolves exactly in sync to the original state, meaning Y'(t) =
S(M)Y(t) for all times t, then S(A) is a symmetry transformation. Alternatively, we can say that if
evolving the initial state first and transforming it second, S(A)U(t), results in the same final state as
transforming it first and evolving it second, U(t)S(A)y, for all times t, then S(1) is a symmetry
transformation. In other words, a symmetry transformation leaves the law of time evolution unaffected.
Mathematically, we have U(t)S(1) = S(1)U(t) or, equivalently, [S(1), U(t)] = 0 for all t, where [+, -]
is the commutator bracket.

Summary: a symmetry transformation commutes with the time evolution (left side of the diagram).

Making use of U(t) = e, the condition [S(A), U(t)] = 0 for all t can also be written as [S(1), H] =
0. This can be demonstrated by expanding the matrix exponential into its power series. Furthermore,
the unitary transformation can be written as S(4) = eG4 where G is the generator of the
transformation (times i). Now, the condition [S(4), H] = 0 can be rewritten as [G, H] = 0. Again, this
can be demonstrated by expanding the matrix exponential into its power series e 6 = [ —iGA +

L(=iGA)? + .
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Summary: the generator of a symmetry transformation commutes with the Hamiltonian (left side of the
diagram).

What is a conserved quantity? A quantum-mechanical observable is represented by an operator, G. The
expectation value of this observable is given by (G) = 1T Gi. Knowing how 1 evolves in time, we can
calculate how this expectation value evolves in time (from time 0 to time t): (G (t)) = Y(t)TGyY(t) =
[U®YO)]TG[U )Y (0)] = yw(0)TUL()GU(t)y(0). For this value to be conserved (= to be time
independent), we need U~1(£)GU(t) = G or, equivalently, [G, U(t)] = 0 for all t. It can be shown that
this condition not only conserves the expectation value but the entire probability distribution of the
observable. Finally, making use of U(t) = e, the condition [G, U(t)] = 0 for all t can be rewritten as
[G,H] = 0.

Summary: a conserved observable commutes with the Hamiltonian (right side of the diagram).

How are symmetry and conservation related? From the above arguments, we conclude: if S(1) is a
symmetry transformation, then the associated generator G is a conserved observable, meaning that the
expectation value (G (t)) = ¥ (t)TGy(t) and the probability distribution of the observable are time
independent. Conversely, if G is a conserved observable, then taking the exponential map yields a
symmetry transformation, S(1) = e ¢4,

To understand this better, let’s assume that, in addition to [G, H] = 0, the initial state 1(0) is an
eigenstate of the conserved observable G, that is, (0) = ¢, for some i, where G¢; = g;¢;. Because
[G, H] = 0, this state is also an eigenstate of the Hamiltonian H, that is, H¢; = E;¢;. For this special
state the observable G has a definite value, namely g;, and the energy has a definite value, namely E;.
Both values are time independent (= conserved). In this case, the symmetry transformation S(1) =
e~ simply multiplies the state with a phase factor, namely ¥'(0) = e ~1é*)(0) = e~9i%1))(0), and
likewise the time evolution U(t) = e "t multiplies the state with another phase factor, namely y(t) =
e~ tHt(0) = e~Eity)(0). Clearly, the two phase factors commute. Note that the symmetry
transformation changes the phase of the state by A@ = g;AA and therefore g; is the rate of change of
the phase with respect to A. In other words, for these definite-value states, we can interpret the value of
the conserved observable as the rate of change of the quantum-mechanical phase with respect to the
parameter of the associated symmetry transformation [FLP, Vol. lll, Ch. 17].

For example, the rate of change of the quantum-mechanical phase with respect to the angle of rotation
about the z axis is the angular momentum about the z axis (assuming the state has a definite angular
momentum about the z axis). Similarly, the rate of change of the phase with respect to the amount of
translation along the x axis is the momentum in the x direction (assuming the state has a definite
momentum in the x direction). Note that phase change per distance is a wavenumber and thus has the
right dimension for momentum (A = 1). Finally, the rate of change of the phase with respect to the
amount of time translation is the energy (assuming the state has a definite energy). Note that phase
change per time interval is an (angular) frequency and thus has the right dimension for energy.
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