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9.5 Symmetry and Conservation in Classical Hamiltonian Mechanics 

In the (classical) Hamiltonian framework, the state of a system is given by the (generalized) position 

coordinates �� and the canonical momenta ��  (conjugate to ��), which together define a point (�, �) in 

(momentum) phase space (= cotangent bundle of configuration space). This state evolves according to 

Hamilton’s equations ��� = 	ℎ(�, �)/	�� and ��� = −	ℎ(�, �)/	��, where ℎ(�, �) is the Hamiltonian, a 

function of phase space. Introducing the Poisson-bracket notation �, �� ≔ ∑ (	�/	�� ∙ 	�/	�� −�
	�/	�� ∙ 	�/	��), we can rewrite these equations more systematically as ��� = ��, ℎ� and ��� = ��, ℎ�. 
Integrating these differential equations yields the explicit time evolution ��(�) = �(�, �, �)��(0) and 

��(�) = �(�, �, �)��(0), where �(�, �, �) = �	∙	,��� assuming that ℎ(�, �) is time independent. The 

exponential expression ��(�) = �	∙	,�����(0) is to be interpreted as the power series ��(�) = [�� +
��, ℎ�� + �

���, ℎ�, ℎ��� +⋯]"#$"#(%) and the same comment applies to ��(�). For more information on 

Hamiltonian mechanics, see [TM, Vol. 1, Ch. 8-10; NNCM, Ch. 5; RtR, Ch. 20.2]. 

What is a symmetry transformation? A time-independent transformation acting on phase space can be 

given by specifying the generator function �(�, �) to be used with the differential equations &��/&' =
��, �(�, �)� and &��/&' = ��, �(�, �)�, where ' is the transformation parameter. Integrating these 

equations yields the explicit canonical transformation ��( = )(', �, �)�� and ��( = )(', �, �)��, where 

)(', �, �) = �	∙	,*�+ [NNCM, Ch. 7.3.3]. Now, if evolving the initial state first and transforming it second, 

)(')�(�)(�(0), �(0)), results in the same final state as transforming it first and evolving it second, 

�(�))(')(�(0), �(0)), for all times �, then )(') is a symmetry transformation. Mathematically, we have 

[)('), �(�)] = [�	∙	,*�+, �	∙	,���] = 0 for all �. 
Summary: a symmetry transformation commutes with the time evolution (left side of the diagram). 

Let’s express the above condition in terms of the generator functions �(�, �) and ℎ(�, �). Expanding the 

exponentials into power series, we find that the exponentials commute if 	∙	, ��, ℎ� = 	∙	, ℎ�, �� or, 

more explicitly, if �, ��, ℎ� = �, ℎ�, �� holds for any function �(�, �). Using the Jacobi identity, 
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{{�, �}, ℎ} + {{ℎ, �}, �} + {{�, ℎ}, �} = 0, we can see that this is equivalent to the condition {�, ℎ} = 0. 

(While this symmetry condition is sufficient, it is not strictly necessary and could be relaxed [NNCM, Ch. 

10.3.1].) We can interpret the condition {ℎ, �} = 0 (which is identical to {�, ℎ} = 0) as saying that the 

symmetry generator � leaves the Hamiltonian, which encodes the law of time evolution, invariant. 

Summary: the generator of a symmetry transformation “Poisson commutes” with the Hamiltonian (left 

side of the diagram). 

How is the generator function �(�, �) in this example (Hamiltonian formalism) related to the generator 

matrix / in the previous example (Lagrangian formalism)? To find out, we compare the transformation 

��( = �	∙	,*�+�� with the transformation ��( = �0#1+�2. Taking the derivative with respect to ' and 

evaluating the result at the identity, the transformation rates are 	��(/	' = ��, �(�, �)� and 	��(/	' =
/�2�2, respectively. These rates agree, if ��, �(�, �)� = /�2�2 or, after expanding the Poisson bracket, 

	�(�, �)/	�� = /�2�2. After integration with respect to ��, we find �(�, �) = ��/�2�2 or, in vector-

matrix notation, �(�, �) = �3/�. Thus, given the generator matrix / of a point transformation, the 

corresponding generator function in the Hamiltonian formalism is �3/�. (Incidentally, if the position 

vector transform like ��( = �0#1+�2, then, to be consistent with the canonical transformation generated 

by the function �3/�, the momentum vector must transform like ��( = �401#+�2. Thus, in the case of 

orthogonal transformations, where /�2 = −/2�, the position and momentum coordinates transform 

identically.) 

What is a conserved quantity? A classical observable is given by a real function of the state: �(�, �). Its 

value at time zero is �(�(0), �(0)) and evolves to �(�(�), �(�)) at time �. Hamilton’s equations ��� =
��, ℎ� and ��� = ��, ℎ� can be generalized for an arbitrary observable �(�, �). Evaluating ��(�, �) using 

the chain rule, we find 

��(�, �) =5 6	�	�� ��, ℎ� +
	�
	�� �� , ℎ�7�

=5 6	�	��
	ℎ
	�� −

	�
	��

	ℎ
	��7�

. 

Rewriting this with a Poisson bracket yields the generalized Hamilton equation �� = �, ℎ�. It follows that 

for � to be conserved (= to be time independent), we need �, ℎ� = 0. 

Summary: the phase-space function of a conserved observable “Poisson commutes” with the 

Hamiltonian (right side of the diagram). 

How are symmetry and conservation related? From the above arguments, we conclude: if the function 

�(�, �) generates a symmetry transformation, then this same function is a conserved observable. 

Conversely, if �(�, �) is a conserved observable, then this same function generates a symmetry 

transformation. 

The relationship between symmetry and conservation in the Hamiltonian formulation of classical 

mechanics closely parallels that of quantum mechanics. The Poisson brackets in classical Hamiltonian 

mechanics correspond to the commutator brackets in quantum mechanics. 

  


