5.21 $\operatorname{Spin}^{+}(1,3):$ The Double Cover of $\mathrm{SO}^{+}(1,3) ; \mathrm{so}(1,3)_{\mathrm{c}}=\mathrm{so}(3)_{\mathrm{c}} \oplus \mathrm{so}(3)_{\mathrm{c}}$

When discussing SO(4), we were able to split the group and its algebra into two independent parts by changing the parameters from θ_{k} and ϕ_{k} to the linear combinations $\vartheta_{k}^{+}=\theta_{k}+\phi_{k}$ and $\vartheta_{k}^{-}=\theta_{k}-\phi_{k}$. Can we do something similar for $\mathrm{SO}^{+}(1,3)$?

Inspired by our experience with the self-dual and anti-self-dual representations, we may try the parameter combinations $\vartheta_{k}^{+}=\theta_{k}+i \phi_{k}$ and $\vartheta_{k}^{-}=\theta_{k}-i \phi_{k}$. Substituting $\theta_{k}=\frac{1}{2}\left(\vartheta_{k}^{+}+\vartheta_{k}^{-}\right)$and $\phi_{k}=$ $\frac{1}{2} i\left(\vartheta_{k}^{-}-\vartheta_{k}^{+}\right)$into the original Lorentz transformation (shown in the upper branch of the diagram), splitting each factor into a matrix that depends on ϑ_{x}^{+}and one that depends on ϑ_{x}^{-}, and combining matrices that depend on the same parameter yields the new transformation $\widetilde{\Lambda}=\Lambda_{x}^{+}\left(\vartheta_{x}^{-}\right) \cdot \Lambda_{x}^{-}\left(\vartheta_{x}^{+}\right)$. $\Lambda_{y}^{+}\left(\vartheta_{y}^{-}\right) \cdot \Lambda_{y}^{-}\left(\vartheta_{y}^{+}\right) \cdot \Lambda_{z}^{+}\left(\vartheta_{z}^{-}\right) \cdot \Lambda_{z}^{-}\left(\vartheta_{z}^{+}\right)$, where

$$
\begin{aligned}
& \Lambda_{x}^{+}=\left(\begin{array}{cccc}
\cos \vartheta_{x}^{-} / 2 & i \sin \vartheta_{x}^{-} / 2 & 0 & 0 \\
i \sin \vartheta_{x}^{-} / 2 & \cos \vartheta_{x}^{-} / 2 & 0 & 0 \\
0 & 0 & \cos \vartheta_{x}^{-} / 2 & -\sin \vartheta_{x}^{-} / 2 \\
0 & 0 & \sin \vartheta_{x}^{-} / 2 & \cos \vartheta_{x}^{-} / 2
\end{array}\right), \Lambda_{x}^{-}=\left(\begin{array}{cccc}
\cos \vartheta_{x}^{+} / 2 & -i \sin \vartheta_{x}^{+} / 2 & 0 & 0 \\
-i \sin \vartheta_{x}^{+} / 2 & \cos \vartheta_{x}^{+} / 2 & 0 & 0 \\
0 & 0 & \cos \vartheta_{x}^{+} / 2 & -\sin \vartheta_{x}^{+} / 2 \\
0 & 0 & \sin \vartheta_{x}^{+} / 2 & \cos \vartheta_{x}^{+} / 2
\end{array}\right), \\
& \Lambda_{y}^{+}=\left(\begin{array}{cccc}
\cos \vartheta_{y}^{-} / 2 & 0 & i \sin \vartheta_{y}^{-} / 2 & 0 \\
0 & \cos \vartheta_{y}^{-} / 2 & 0 & \sin \vartheta_{y}^{-} / 2 \\
i \sin \vartheta_{y}^{-} / 2 & 0 & \cos \vartheta_{y}^{-} / 2 & 0 \\
0 & -\sin \vartheta_{y}^{-} / 2 & 0 & \cos \vartheta_{y}^{-} / 2
\end{array}\right), \Lambda_{y}^{-}=\left(\begin{array}{cccc}
\cos \vartheta_{y}^{+} / 2 & 0 & -i \sin \vartheta_{y}^{+} / 2 & 0 \\
0 & \cos \vartheta_{y}^{+} / 2 & 0 & \sin \vartheta_{y}^{+} / 2 \\
-i \sin \vartheta_{y}^{+} / 2 & 0 & \cos \vartheta_{y}^{+} / 2 & 0 \\
0 & -\sin \vartheta_{y}^{+} / 2 & 0 & \cos \vartheta_{y}^{+} / 2
\end{array}\right) \text {, } \\
& \Lambda_{z}^{+}=\left(\begin{array}{cccc}
\cos \vartheta_{Z}^{-} / 2 & 0 & 0 & i \sin \vartheta_{\bar{Z}}^{-} / 2 \\
0 & \cos \vartheta_{z}^{-} / 2 & -\sin \vartheta_{z}^{-} / 2 & 0 \\
0 & \sin \vartheta_{Z}^{-} / 2 & \cos \vartheta_{Z}^{-} / 2 & 0 \\
i \sin \vartheta_{z}^{-} / 2 & 0 & 0 & \cos \vartheta_{z}^{-} / 2
\end{array}\right), \Lambda_{z}^{-}=\left(\begin{array}{cccc}
\cos \vartheta_{z}^{+} / 2 & 0 & 0 & -i \sin \vartheta_{Z}^{+} / 2 \\
0 & \cos \vartheta_{z}^{+} / 2 & -\sin \vartheta_{z}^{+} / 2 & 0 \\
0 & \sin \vartheta_{Z}^{+} / 2 & \cos \vartheta_{Z}^{+} / 2 & 0 \\
-i \sin \vartheta_{Z}^{+} / 2 & 0 & 0 & \cos \vartheta_{Z}^{+} / 2
\end{array}\right)
\end{aligned}
$$

(the superscripts of $\Lambda_{i}^{ \pm}$will make sense in a moment). Similar to what happened for SO(4), the new matrix $\widetilde{\Lambda}$ is no longer a representation of $\operatorname{SO}^{+}(1,3)$ but of its double cover, $\operatorname{Spin}^{+}(1,3)$. In other words, each element of $\mathrm{SO}^{+}(1,3)$ is now labeled by two distinct sets of parameter values. Moreover, for $\widetilde{\Lambda}$ to
remain real, as required for a Lorentz transformation, the new parameters must be restricted to be complex conjugates of each other: $\vartheta_{k}^{-}=\left(\vartheta_{k}^{+}\right)^{*}$. If, instead, we permit generally complex parameters ϑ_{k}^{+} and ϑ_{k}^{-}, the set of transformations grows from depending on six to twelve real parameters and the transformations become complex. This larger group is known as the complexification of $\operatorname{Spin}^{+}(1,3)$, written as $\operatorname{Spin}^{+}(1,3)_{\mathbb{C}}$ or $\operatorname{Spin}^{+}(1,3) \otimes \mathbb{C}$ (see the lower branch of the diagram).

Taking the derivatives of the transformation matrix $\widetilde{\Lambda}$ with respect to the new parameters and setting them to zero yields the following basis generators:

$$
\begin{gathered}
V_{x}^{+}=\frac{1}{2}\left(\begin{array}{cccc}
0 & i & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right), V_{y}^{+}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & i & 0 \\
0 & 0 & 0 & 1 \\
i & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), V_{z}^{+}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & i \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right), \\
V_{x}^{-}=\frac{1}{2}\left(\begin{array}{cccc}
0 & -i & 0 & 0 \\
-i & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right), V_{y}^{-}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & 1 \\
-i & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), V_{z}^{-}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-i & 0 & 0 & 0
\end{array}\right) .
\end{gathered}
$$

These basis generators are linear combinations of the old ones $V_{k}^{+}=\frac{1}{2}\left(T_{k}+i U_{k}\right)$ and $V_{k}^{-}=\frac{1}{2}\left(T_{k}-i U_{k}\right)$ (now the \pm superscripts now make!). Exponentiating these generators and pairing them appropriately confirms that they reproduce the original Lorentz transformations: $\exp \left[\frac{1}{2}\left(T_{k}+i U_{k}\right)\left(\theta_{k}-i \phi_{k}\right)\right]$. $\exp \left[\frac{1}{2}\left(T_{k}-i U_{k}\right)\left(\theta_{k}+i \phi_{k}\right)\right]=\exp \left(T_{k} \theta_{k}\right) \cdot \exp \left(U_{k} \phi_{k}\right)$ (note that $\left.\left[T_{k}, U_{k}\right]=0\right)$. Evaluating the commutators shows that all three V_{i}^{+}commute with all three V_{j}^{-}, that is, $\left[V_{i}^{+}, V_{j}^{-}\right]=0$, and thus the algebra splits in two parts, as we were hoping for! Checking the remaining commutation relations reveals $\left[V_{i}^{+}, V_{j}^{+}\right]=\varepsilon_{i j k} V_{k}^{+}$and $\left[V_{i}^{-}, V_{j}^{-}\right]=\varepsilon_{i j k} V_{k}^{-}$, that is, the same relations as for so(3). (For $J_{k}=i T_{k}$ and $K_{k}=i U_{k}$, we get the new generators $N_{k}^{ \pm}=\frac{1}{2}\left(J_{k} \pm i K_{k}\right)$ with the commutation relations $\left[N_{i}^{+}, N_{j}^{-}\right]=0,\left[N_{i}^{+}, N_{j}^{+}\right]=i \varepsilon_{i j k} N_{k}^{+}$, and $\left.\left[N_{i}^{-}, N_{j}^{-}\right]=i \varepsilon_{i j k} N_{k}^{-}[\mathrm{PfS}, \mathrm{Ch} .3 .7 .3].\right)$

Does so(1,3) break up into so(3) \oplus so(3)? No, not quite! The new basis generators V_{k}^{+}and V_{k}^{-}do not span the same vector space over the reals as the old ones (T_{k} and U_{k}) and thus the new Lie algebra, which splits into two parts, is not so(1,3). However, the larger bases given by $V_{k}^{+}, i V_{k}^{+}, V_{k}^{-}, i V_{k}^{-}$and T_{k}, $i T_{k}, U_{k}, i U_{k}$ do span the same vector space over the reals, which is now twelve dimensional. It is this complexified Lie algebra that splits into two parts: so $(1,3)_{\mathbb{C}}=\operatorname{so}(3)_{\mathbb{C}} \oplus \operatorname{so}(3)_{\mathbb{C}}$. See the Appendix "From Rotation to Lorentz Transformation" for more information.

We can think of $\operatorname{Spin}^{+}(1,3)$ as a 6 -dimensional subgroup, a so-called real form, of the 12 -dimensional group $\operatorname{Spin}^{+}(1,3)_{\mathbb{C}}$. The complexified group $\operatorname{Spin}^{+}(1,3)_{\mathbb{C}}$ is isomorphic to $\operatorname{Spin}(4)_{\mathbb{C}}$ and also has $\operatorname{Spin}(4)$ and $\operatorname{Spin}^{+}(2,2)$ as possible real forms. Whereas the latter two real forms split into two parts, $\operatorname{Spin}^{+}(1,3)$ does not [QTGR, Ch. 40.4].

Without the ability to cleanly split so(1,3) into so(3) \oplus so(3), how can we systematically enumerate the irreducible representations of so(1,3)? It turns out that if we limit ourselves to the finite-dimensional irreducible representations, we can still enumerate them by specifying two representations of so(3). This can be shown with Weyl's unitarian trick [Wikipedia: Representation theory of the Lorentz group]. In other words, the naming scheme $\left(j_{1}, j_{2}\right)$ that we introduced for the representations of so(4) carries over to so(1,3)! See the Appendix "The Irreducible Representations of the Lorentz Group".

