

5.21 Spin⁺(1,3): The Double Cover of SO⁺(1,3); $so(1,3)_{c} = so(3)_{c} \oplus so(3)_{c}$

When discussing SO(4), we were able to split the group and its algebra into two independent parts by changing the parameters from θ_k and ϕ_k to the linear combinations $\vartheta_k^+ = \theta_k + \phi_k$ and $\vartheta_k^- = \theta_k - \phi_k$. Can we do something similar for SO⁺(1,3)?

Inspired by our experience with the self-dual and anti-self-dual representations, we may try the parameter combinations $\vartheta_k^+ = \theta_k + i\phi_k$ and $\vartheta_k^- = \theta_k - i\phi_k$. Substituting $\theta_k = \frac{1}{2}(\vartheta_k^+ + \vartheta_k^-)$ and $\phi_k = \frac{1}{2}i(\vartheta_k^- - \vartheta_k^+)$ into the original Lorentz transformation (shown in the upper branch of the diagram), splitting each factor into a matrix that depends on ϑ_x^+ and one that depends on ϑ_x^- , and combining matrices that depend on the same parameter yields the new transformation $\widetilde{\Lambda} = \Lambda_x^+(\vartheta_x^-) \cdot \Lambda_x^-(\vartheta_x^+) \cdot \Lambda_y^+(\vartheta_y^-) \cdot \Lambda_y^-(\vartheta_y^+) \cdot \Lambda_z^-(\vartheta_z^-)$, where

$$\begin{split} \Lambda_x^+ &= \begin{pmatrix} \cos\vartheta_x^-/2 & i\sin\vartheta_x^-/2 & 0 & 0\\ i\sin\vartheta_x^-/2 & \cos\vartheta_x^-/2 & 0 & 0\\ 0 & 0 & \cos\vartheta_x^-/2 & -\sin\vartheta_x^-/2\\ 0 & 0 & \sin\vartheta_x^-/2 & \cos\vartheta_x^-/2 \end{pmatrix}, \ \Lambda_x^- &= \begin{pmatrix} \cos\vartheta_x^+/2 & -i\sin\vartheta_x^+/2 & 0 & 0\\ -i\sin\vartheta_x^+/2 & \cos\vartheta_x^+/2 & 0 & 0\\ 0 & 0 & \cos\vartheta_x^+/2 & -\sin\vartheta_x^+/2\\ 0 & 0 & \sin\vartheta_x^+/2 & \cos\vartheta_x^+/2 \end{pmatrix}, \\ \Lambda_y^+ &= \begin{pmatrix} \cos\vartheta_y^-/2 & 0 & i\sin\vartheta_y^-/2 & 0\\ 0 & \cos\vartheta_y^-/2 & 0 & \sin\vartheta_y^-/2\\ i\sin\vartheta_y^-/2 & 0 & \cos\vartheta_y^-/2 & 0\\ 0 & -\sin\vartheta_y^+/2 & 0 & \cos\vartheta_y^+/2 \end{pmatrix}, \ \Lambda_y^- &= \begin{pmatrix} \cos\vartheta_y^+/2 & 0 & -i\sin\vartheta_y^+/2 & 0\\ 0 & \cos\vartheta_y^+/2 & 0 & \sin\vartheta_y^+/2\\ -i\sin\vartheta_y^+/2 & 0 & \cos\vartheta_y^+/2 & 0\\ 0 & -\sin\vartheta_y^+/2 & 0 & \cos\vartheta_y^+/2 \end{pmatrix}, \\ \Lambda_z^+ &= \begin{pmatrix} \cos\vartheta_z^-/2 & 0 & 0 & i\sin\vartheta_z^-/2\\ 0 & \cos\vartheta_z^-/2 & -\sin\vartheta_z^-/2 & 0\\ 0 & \sin\vartheta_z^-/2 & \cos\vartheta_z^-/2 & 0\\ 0 & \sin\vartheta_z^-/2 & 0 & 0 & \cos\vartheta_z^-/2 \end{pmatrix}, \ \Lambda_z^- &= \begin{pmatrix} \cos\vartheta_z^+/2 & 0 & 0 & -i\sin\vartheta_z^+/2\\ 0 & \cos\vartheta_z^+/2 & -i\sin\vartheta_z^+/2 & 0\\ 0 & \sin\vartheta_z^+/2 & \cos\vartheta_z^+/2 & 0\\ 0 & \sin\vartheta_z^+/2 & \cos\vartheta_z^+/2 & 0\\ 0 & \sin\vartheta_z^+/2 & \cos\vartheta_z^+/2 & 0\\ -i\sin\vartheta_z^+/2 & \cos\vartheta_z^+/2 & 0\\ -i\sin\vartheta_z^+/2 & \cos\vartheta_z^+/2 & 0 \end{pmatrix},$$

(the superscripts of Λ_i^{\pm} will make sense in a moment). Similar to what happened for SO(4), the new matrix $\tilde{\Lambda}$ is no longer a representation of SO⁺(1,3) but of its double cover, Spin⁺(1,3). In other words, each element of SO⁺(1,3) is now labeled by two distinct sets of parameter values. Moreover, for $\tilde{\Lambda}$ to

E. Sackinger: Groups in Physics (Draft Version 0.2, September 30, 2023)

remain real, as required for a Lorentz transformation, the new parameters must be restricted to be complex conjugates of each other: $\vartheta_k^- = (\vartheta_k^+)^*$. If, instead, we permit generally complex parameters ϑ_k^+ and ϑ_k^- , the set of transformations grows from depending on six to twelve real parameters and the transformations become complex. This larger group is known as the *complexification* of Spin⁺(1,3), written as Spin⁺(1,3)_C or Spin⁺(1,3) \otimes C (see the lower branch of the diagram).

Taking the derivatives of the transformation matrix $\widetilde{\Lambda}$ with respect to the new parameters and setting them to zero yields the following basis generators:

$$V_{x}^{+} = \frac{1}{2} \begin{pmatrix} 0 & i & 0 & 0 \\ i & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, V_{y}^{+} = \frac{1}{2} \begin{pmatrix} 0 & 0 & i & 0 \\ 0 & 0 & 0 & 1 \\ i & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, V_{z}^{+} = \frac{1}{2} \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 1 & 0 & 0 \\ i & 0 & 0 & 0 \end{pmatrix},$$
$$V_{x}^{-} = \frac{1}{2} \begin{pmatrix} 0 & -i & 0 & 0 \\ -i & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, V_{y}^{-} = \frac{1}{2} \begin{pmatrix} 0 & 0 & -i & 0 \\ 0 & 0 & 0 & 1 \\ -i & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, V_{z}^{-} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix}.$$

These basis generators are linear combinations of the old ones $V_k^+ = \frac{1}{2}(T_k + iU_k)$ and $V_k^- = \frac{1}{2}(T_k - iU_k)$ (now the ± superscripts now make!). Exponentiating these generators and pairing them appropriately confirms that they reproduce the original Lorentz transformations: $\exp[\frac{1}{2}(T_k + iU_k)(\theta_k - i\phi_k)] \cdot \exp[\frac{1}{2}(T_k - iU_k)(\theta_k + i\phi_k)] = \exp(T_k\theta_k) \cdot \exp(U_k\phi_k)$ (note that $[T_k, U_k] = 0$). Evaluating the commutators shows that all three V_i^+ commute with all three V_j^- , that is, $[V_i^+, V_j^-] = 0$, and thus the algebra splits in two parts, as we were hoping for! Checking the remaining commutation relations reveals $[V_i^+, V_j^+] = \varepsilon_{ijk}V_k^+$ and $[V_i^-, V_j^-] = \varepsilon_{ijk}V_k^-$, that is, the same relations as for so(3). (For $J_k = iT_k$ and $K_k = iU_k$, we get the new generators $N_k^{\pm} = \frac{1}{2}(J_k \pm iK_k)$ with the commutation relations $[N_i^+, N_j^-] = 0, [N_i^+, N_i^+] = i\varepsilon_{ijk}N_k^+$, and $[N_i^-, N_j^-] = i\varepsilon_{ijk}N_k^-$ [PfS, Ch. 3.7.3].)

Does so(1,3) break up into so(3) \oplus so(3)? No, not quite! The new basis generators V_k^+ and V_k^- do not span the same vector space over the reals as the old ones (T_k and U_k) and thus the new Lie algebra, which splits into two parts, is not so(1,3). However, the larger bases given by V_k^+ , iV_k^+ , V_k^- , iV_k^- and T_k , iT_k , U_k , iU_k do span the same vector space over the reals, which is now twelve dimensional. It is this complexified Lie algebra that splits into two parts: so(1,3)_C = so(3)_C \oplus so(3)_C. See the Appendix "From Rotation to Lorentz Transformation" for more information.

We can think of Spin⁺(1,3) as a 6-dimensional subgroup, a so-called *real form*, of the 12-dimensional group Spin⁺(1,3)_{\mathbb{C}}. The complexified group Spin⁺(1,3)_{\mathbb{C}} is isomorphic to Spin(4)_{\mathbb{C}} and also has Spin(4) and Spin⁺(2,2) as possible real forms. Whereas the latter two real forms split into two parts, Spin⁺(1,3) does *not* [QTGR, Ch. 40.4].

Without the ability to cleanly split so(1,3) into so(3) \oplus so(3), how can we systematically enumerate the irreducible representations of so(1,3)? It turns out that if we limit ourselves to the finite-dimensional irreducible representations, we can still enumerate them by specifying two representations of so(3). This can be shown with *Weyl's unitarian trick* [Wikipedia: Representation theory of the Lorentz group]. In other words, the naming scheme (j_1, j_2) that we introduced for the representations of so(4) carries over to so(1,3)! See the Appendix "The Irreducible Representations of the Lorentz Group".