$3.31 \mathrm{Sp}(1)$: The Group of Quaternions of Unit Length

We studied transformations that preserve the (Euclidean) inner product $x^{T} y$ of two real vectors ($x, y \in$ \mathbb{R}^{n}). We also studied transformations that preserve the (Hermitian) inner product $\psi^{\dagger} \phi$ of two complex vectors $\left(\psi, \phi \in \mathbb{C}^{n}\right)$. What's next? Transformations that preserve the inner product $p^{\dagger} q$ of two quaternionic vectors ($p, q \in \mathbb{H}^{n}$, where the letter H stands for Hamilton who discovered the quaternions)! Transformations of the first type are called orthogonal (= real unitary) and form the group $\mathrm{O}(\mathrm{n})$, those of the second type are called unitary and form the group $\mathrm{U}(\mathrm{n})$, finally, those of the third type are called quaternionic unitary and form the group $U(n, \mathbb{H})$. The latter group is more commonly known as the compact symplectic group $\mathrm{Sp}(\mathrm{n})$. (See John Baez: Symplectic, Quaternionic, Fermionic, https://math.ucr.edu/home/baez/symplectic.html for an explanation of this name.)

The quaternions are a generalization of the complex numbers: instead of $a+i b$ we have $q=w+i x+$ $j y+k z$, where $w, x, y, z \in \mathbb{R}$, that is, the imaginary part now has three pieces. Quaternionic conjugation changes the sign of the entire imaginary part: $q^{*}=w-i x-j y-k z$. To multiply two quaternions, we need to know all possible products of the three imaginary units i, j, and k. Each unit multiplied by itself yields minus one, $i^{2}=j^{2}=k^{2}=-1$, just like for the complex numbers. The remaining six mixed products anticommutes and are given by $i j=k, j i=-k, j k=i, k j=-i, k i=j, i k=-j$.

The defining representation of $\operatorname{Sp}(1)$ consists of the quaternions u that preserve the inner product, $(u p)^{*}(u q)=p^{*} q$, for any pair of quaternions p and q. Rewriting as $p^{*} u^{*} u q=p^{*} q$, we see that this is the case if $u^{*} u=1$. Thus, u must be a unit-length quaternion: $u=a_{0}+i a_{x}+j a_{y}+k a_{z}$, where $a_{0}^{2}+$ $a_{x}^{2}+a_{y}^{2}+a_{z}^{2}=1$ and $a_{i} \in \mathbb{R}$. These unit-length quaternions act on the general quaternions, $q=w+$ $i x+j y+k z$, in the representation space: $q^{\prime}=u q$ (see the upper branch of the diagram).

What is so special about $\mathrm{Sp}(1)$? It turns out that $\mathrm{Sp}(1)$ is isomorphic to $\mathrm{SU}(2)$! Thus, $\mathrm{Sp}(1)$ provides another way of looking at spinorial rotations: rather than "unitary 2×2 matrices with determinant one", we can also use "unit quaternions".

To show that $\mathrm{Sp}(1)$ and $\mathrm{SU}(2)$ are isomorphic, we need to establish a dictionary translating between the two groups. If we identify the quaternion $q=w+i x+j y+k z$ with the complex 2×2 matrix

$$
Q=w I-i\left(x \sigma_{x}+y \sigma_{y}+z \sigma_{z}\right)=\left(\begin{array}{cc}
w-i z & -y-i x \\
y-i x & w+i z
\end{array}\right)
$$

quaternion multiplication and matrix multiplication do the same thing! The three imaginary units of the quaternions behave just like the three Pauli matrices (times $-i$). For example, $i j=k$ translates to $\left(-i \sigma_{x}\right)\left(-i \sigma_{y}\right)=\left(-i \sigma_{z}\right)$; similarly, $k^{2}=-1$ translates to $\left(-i \sigma_{z}\right)\left(-i \sigma_{z}\right)=-I$. Both translations are true statements. Next, we identify the unit quaternion $u=a_{0}+i a_{x}+j a_{y}+k a_{z}$, which is an element of $S p(1)$, with the complex matrix

$$
U=a_{0} I-i\left(a_{x} \sigma_{x}+a_{y} \sigma_{y}+a_{z} \sigma_{z}\right)=\left(\begin{array}{cc}
a_{0}-i a_{z} & -a_{y}-i a_{x} \\
a_{y}-i a_{x} & a_{0}+i a_{z}
\end{array}\right) \quad \text { where } a_{0}^{2}+a_{x}^{2}+a_{y}^{2}+a_{z}^{2}=1
$$

But this is exactly the $\operatorname{SU}(2)$ matrix we encountered earlier when discussing 3-sphere parameters! For example, the unit quaternion $u(\theta)=\cos (\theta / 2)+k \sin (\theta / 2)$ translates to the $\mathrm{SU}(2)$ matrix

$$
U(\theta)=\left(\begin{array}{cc}
\cos (\theta / 2)-i \sin (\theta / 2) & 0 \\
0 & \cos (\theta / 2)+i \sin (\theta / 2)
\end{array}\right)=\left(\begin{array}{cc}
\exp (-i \theta / 2) & 0 \\
0 & \exp (i \theta / 2)
\end{array}\right)
$$

which rotates a spinor about the z-axis. (Dictionary: $a_{0}=\cos (\theta / 2), a_{x}=a_{y}=0, a_{z}=\sin (\theta / 2)$)
With this correspondence established, we can translate a unit quaternion acting on an arbitrary quaternion, $q^{\prime}=u q$, to an $\operatorname{SU}(2)$ matrix U acting on a matrix Q of the form defined above, $Q^{\prime}=U Q$. But there is one small problem: we are not used to an $\operatorname{SU}(2)$ matrix that acts on a matrix, $Q^{\prime}=U Q$, we expect it to act on a spinor, $\psi^{\prime}=U \psi$. To get rid of this discrepancy, we keep only the first column of Q, that is, we identify q with the spinor $\psi=\binom{w-i z}{y-i x}$. The second column of Q is redundant.

Let's have a look at the Lie algebra sp(1). Taking the derivatives of $u=\sqrt{1-a_{x}^{2}-a_{y}^{2}-a_{z}^{2}}+i a_{x}+j a_{y}+k a_{z}$ with respect to a_{x}, a_{y}, a_{z} and then evaluating the results at the identity ($a_{x}=a_{y}=a_{z}=0$ and thus $a_{0}=1$) yields the three basis generators i, j, k. Thus, the Lie algebra consists of purely imaginary quaternions (= quaternions with no real part). For example, the generator of rotation about the z-axis is $\hat{x}=k \in \operatorname{sp}(1)$ and translates to $X=-i \sigma_{z} \in \operatorname{su}(2)$. Finally, normalizing the basis generators such that they satisfy the commutation relations of $s u(2)$ yields $i / 2, j / 2, k / 2$ (see the diagram).

Can we use quaternions to rotate real 3D vectors (as opposed to spinors)? Yes, we know from our discussion of $S U(2)$ that the adjoint representation can do that! We take as our representation space a copy of the Lie algebra (red arrows in the diagram), which is a 3-dimensional vector space over the reals with the basis i, j, k. (In contrast, the representation space of the defining representation can be regarded as either as a 1-dimensional vector space over the quaternions [basis: 1] or, equivalently, as a 4-dimensional vector space over the reals [basis: $1, i, j, k$]). To rotate the real 3D vector $(\tilde{x}, \tilde{y}, \tilde{z})$, we pack it into the imaginary part of the quaternion $\tilde{q}=i \tilde{x}+j \tilde{y}+k \tilde{z}$; then, we conjugate it with the unit quaternion u that encodes the rotation axis and the rotation angle: $\tilde{q}^{\prime}=u \tilde{q} u^{-1}$; finally, we unpack the rotated vector from the imaginary part of $\tilde{q}^{\prime}=i \tilde{x}^{\prime}+j \tilde{y}^{\prime}+k \tilde{z}^{\prime}$. Interestingly, this method has numerical advantages over the more straightforward method of using real 3×3 matrices and thus finds practical applications in computer graphics.

