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3.31 Sp(1): The Group of Quaternions of Unit Length 

 
We studied transformations that preserve the (Euclidean) inner product ��� of two real vectors (�, � ∈
ℝ�). We also studied transformations that preserve the (Hermitian) inner product �	
 of two complex 

vectors (�,
 ∈ ℂ�). What’s next? Transformations that preserve the inner product �	 of two 

quaternionic vectors (�,  ∈ ℍ�, where the letter H stands for Hamilton who discovered the 

quaternions)! Transformations of the first type are called orthogonal (= real unitary) and form the group 

O(n), those of the second type are called unitary and form the group U(n), finally, those of the third type 

are called quaternionic unitary and form the group U(n, ℍ). The latter group is more commonly known 

as the compact symplectic group Sp(n). (See John Baez: Symplectic, Quaternionic, Fermionic, 

https://math.ucr.edu/home/baez/symplectic.html for an explanation of this name.) 

The quaternions are a generalization of the complex numbers: instead of � + �� we have  = � + �� +
�� + ��, where �, �, �, � ∈ ℝ, that is, the imaginary part now has three pieces. Quaternionic conjugation 

changes the sign of the entire imaginary part: ∗ = � − �� − �� − ��. To multiply two quaternions, we 

need to know all possible products of the three imaginary units �, �, and �. Each unit multiplied by itself 

yields minus one, �� = �� = �� = −1, just like for the complex numbers. The remaining six mixed 

products anticommutes and are given by �� = �, �� = −�,	�� = �, �� = −�,	�� = �, �� = −�. 
The defining representation of Sp(1) consists of the quaternions � that preserve the inner product, 

(��)∗(�) = �∗, for any pair of quaternions � and . Rewriting as �∗�∗� = �∗, we see that this is 

the case if �∗� = 1. Thus, � must be a unit-length quaternion: � = � + ��! + ��" + ��#, where � � +
�!� + �"� + �#� = 1 and �$ ∈ ℝ. These unit-length quaternions act on the general quaternions,  = � +
�� + �� + ��, in the representation space: % = � (see the upper branch of the diagram). 

What is so special about Sp(1)? It turns out that Sp(1) is isomorphic to SU(2)! Thus, Sp(1) provides 

another way of looking at spinorial rotations: rather than “unitary 2×2 matrices with determinant one”, 

we can also use “unit quaternions”. 
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To show that Sp(1) and SU(2) are isomorphic, we need to establish a dictionary translating between the 

two groups. If we identify the quaternion  = � + �� + �� + �� with the complex 2×2 matrix 

= = �> � �?�@! + �@" + �@#A = B� � �� �� � ��� � �� � + �� C, 
quaternion multiplication and matrix multiplication do the same thing! The three imaginary units of the 

quaternions behave just like the three Pauli matrices (times ��). For example, �� = � translates to 

(��@!)(��@") = (��@#); similarly, �� = �1 translates to (��@#)(��@#) = �>. Both translations are 

true statements. Next, we identify the unit quaternion � = � + ��! + ��" + ��#, which is an element 

of Sp(1), with the complex matrix 

D = � > � �?�!@! + �"@" + �#@#A = B� � ��# ��" � ��!�" � ��! � + ��# C    where  � � + �!� + �"� + �#� = 1. 
But this is exactly the SU(2) matrix we encountered earlier when discussing 3-sphere parameters! For 

example, the unit quaternion �(F) = cos(F/2) + � sin(F/2) translates to the SU(2) matrix 

D(F) = Bcos(F/2) � � sin(F/2) 00 cos(F/2) + � sin(F/2)C = Bexp(��F/2) 00 exp(�F/2)C, 
which rotates a spinor about the �-axis. (Dictionary: � = cos(F/2), �! = �" = 0, �# = sin(F/2)) 

With this correspondence established, we can translate a unit quaternion acting on an arbitrary 

quaternion, ′ = �, to an SU(2) matrix D acting on a matrix = of the form defined above, =’ = D=. But 

there is one small problem: we are not used to an SU(2) matrix that acts on a matrix, =’ = D=, we 

expect it to act on a spinor, �’ = D�. To get rid of this discrepancy, we keep only the first column of =, 

that is, we identify  with the spinor � = B� − ��
� − ��C. The second column of = is redundant. 

Let’s have a look at the Lie algebra sp(1). Taking the derivatives of � = P&(2QR(2SR(2TR + ��! + ��" + ��# 

with respect to �! , �", �# and then evaluating the results at the identity (�! = �" = �# = 0 and thus 

� = 1) yields the three basis generators �, �, �. Thus, the Lie algebra consists of purely imaginary 

quaternions (= quaternions with no real part). For example, the generator of rotation about the �-axis is 

�. = � ∈ sp(1) and translates to U = −�@# ∈ su(2). Finally, normalizing the basis generators such that 

they satisfy the commutation relations of su(2) yields �/2, �/2, �/2 (see the diagram). 

Can we use quaternions to rotate real 3D vectors (as opposed to spinors)? Yes, we know from our 

discussion of SU(2) that the adjoint representation can do that! We take as our representation space a 

copy of the Lie algebra (red arrows in the diagram), which is a 3-dimensional vector space over the reals 

with the basis �, �, �. (In contrast, the representation space of the defining representation can be 

regarded as either as a 1-dimensional vector space over the quaternions [basis: 1] or, equivalently, as a 

4-dimensional vector space over the reals [basis: 1, �, �, �]). To rotate the real 3D vector (�*, �*, �̃), we 

pack it into the imaginary part of the quaternion * = ��* + ��* + ��̃; then, we conjugate it with the unit 

quaternion � that encodes the rotation axis and the rotation angle: *′ = �*�(&; finally, we unpack the 

rotated vector from the imaginary part of *′ = ��*′ + ��*′ + ��̃′. Interestingly, this method has numerical 

advantages over the more straightforward method of using real 3×3 matrices and thus finds practical 

applications in computer graphics.  


