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3.29 SO(3): Vector-Field Representation; Angular Momentum of Light 

In the following, we have a look at an application of SO(3) to classical field theory. The elements of our 

representation space are now configurations of the electromagnetic vector potential field in physical 3D 

space. Since we are now dealing with vector fields (as opposed to scalar fields), the SO(3) 

transformations act not only on the 3D-space coordinates of the field but also on the field components. 

We know from our spinor-field example that this leads to generators that have two parts. Then, we 

apply Noether’s theorem to these symmetry generators of rotation to find the angular momentum of 

the electromagnetic field. As expected, we get a two-part result: the orbital angular momentum and the 

spin. Let’s see how this works out in detail! 

The electromagnetic vector potential has four components, but thanks to gauge freedom we can set one 

of them to zero without loss of generality. Here, we choose the temporal gauge, which sets the electric 

potential to zero, �� = � = 0, leaving only the �-, �-, and �-components of the magnetic vector 

potential: �	(�	) = (��(�	), ��(�	), ��(�	))�, where �	 = (�, �, �)� [TM, Vol. 3, Ch. 11.4.5]. 

Like in the spinor-field example, we’ll use a more compact notation to keep our expressions from getting 

too messy. First, we choose axis-angle rotation parameters �� = ���, where �� with � = �, �, � is the unit 

vector along the axis and � is the rotation angle about this axis. Then, invoking the Einstein summation 

convention, which implies a summation over repeated indices, we write a general element of the Lie 

algebra as � = ����, where the �� are the basis generators. The upper branch of the diagram shows 

again the defining representation of SO(3), but now using our more compact notation. 

Following the same steps as in the spinor-field example, but now using the 3-dimensional 

representation �[��] to transform real 3D vectors instead of the 2-dimensional representation �[��] to 

transform spinors, we find the overall transformation �	′(�	) = �[��]	�	(���[��]	�	) (no summation over �). After splitting off the vector field, the transformation operator by itself is �� = �[��]{	∙ (���[��] ∙	)}, 

where, as usual, the dots are place holders for the field and its argument (see the diagram). 
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To obtain the generators, we take the derivative of ��  with respect to the �� (using the product rule) and 

then set �� = 0. Again, the steps are completely analogous to those of our spinor-field example, except 

that the generators of � get replaced by generators of � and we don’t multiply them by �. We find the 

three basis generators as ��� = �� ( [�	 % 9;;	]�:, where 9;;	= (*/*�, */*�, */*�)�  and : is the 3×3 identity 

matrix. For example, the generator ��� for rotation about the � axis evaluates to 
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This generator has two parts: the first part rotates the vector components and the second part rotates 

the space coordinates of the field. The generator for an arbitrary axis of rotation is �� = �����. 
Having found the generators of rotation for the electromagnetic potential field, we can now use 

Noether’s theorem to determine the angular momentum of this field. To do that, we need to generalize 

the conserved quantity I = J	 ∙ �K	, introduced earlier, from particles to fields. Given a vector field �;	(�	) 

and a linear symmetry transformation acting on it, the conserved quantity is I = LM;	(�	) ∙ ���;	(�	) N$�, 

where �� is the generator of the symmetry and the vector field M;	(�	) is the canonical momentum density 

conjugate to the field �;	(�	) [TM, Vol. 3, Ch. 11.4.5]. In contrast to Noether’s theorem for particles, the 

degrees of freedom are now given by the field components �� at every point in space rather than the 

position coordinates K�. Whereas we had only three degrees of freedom for our single-particle example, 

we now have infinitely many. Note that the space coordinates �	 of the field are now mere labels, just 

like the indices of the field components. Besides summing over the field components (implicit in the dot 

product), we also integrate over all space. 

Before we can apply Noether’s theorem to the electromagnetic potential �	(�	), we need to determine 

its canonical momentum density. Given our choice of gauge and working in units where the speed of 

light is O = 1, this turns out to be minus the electric field, M;	(�	) = (P;	(�	) [TM, Vol. 3, Ch. 11.4.5]. 

Assuming full rotational symmetry (isotropy), there are three conserved quantities, which we call Q� 
because they are components of angular momentum:	Q� = L(P;	 ∙ (�� ( [�	 % 9;;	]�:)	�	 N$� =(LP;	 ∙ ���	N$� + LP;	 ∙ [�	 % 9;;	]�	�	 N$�. The first term is the spin of the electromagnetic field 

S� = (TP;	 ∙ ���	N$� = T[P;	 % �	]� N$�, 
which is a measure of its circular polarization (P;	 ∙ ���	 = P;	 ∙ U	� % �	 = (U	� ∙ P;	 % �	, where U	� is the �-th 

standard basis vector). The second term is the orbital angular momentum of the electromagnetic field 

7� = TP;	 ∙ V�	 % 9;;	W�	�	 N$�, 
which is a measure of its wavefront shape. For more information on this topic, see the Wikipedia entry 

“Angular momentum of light”.  


