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3.30 SO(3): Tensor-Product Representation; Decomposition 

Given a representation on vectors, we can construct a representation on tensors. In this example, we 

take two copies of the defining representation of SO(3) and construct the 9-dimensional tensor-product 

representation. Then, we’ll decompose it into irreducible representations. 

The upper branch of the diagram shows again the defining representation of SO(3). For our tensor-

product representation we have a choice of writing the elements of the representation space as 3×3 

matrices (tensors) or as 9-component column vectors. In the first case, shown in the lower branch of the 

diagram, the group elements � act on the matrix like ��′ = ����� and the algebra elements � act on the 

matrix like ��′ = ��� + ����. In the second case (not shown), the group and algebra elements are 9×9 

matrices and act by simple matrix-vector multiplication. This is completely analogous to what we have 

said about the tensor-product representations of SU(2). 

Is this 9-dimensional tensor-product representation reducible? Yes, it is. We know that tensors can be 

decomposed into a symmetric and an antisymmetric part, which do not “mix” when transformed. Here, 

the symmetric representation is six dimensional and the antisymmetric representation is three 

dimensional. Are these two representations irreducible? Based on what we learned from SU(2), we 

might think so. But this can’t be right: we know that SO(3) has only odd-dimensional irreducible 

representations! It turns out that the symmetric 6-dimensional representation can be broken up once 

more into a 5- and 1-dimensional irreducible representation. Thus, the compete decomposition of the 

tensor-product representation is 	⨂	 = �⨁	⨁. 

Why can we break up the symmetric representation of SO(3), wheras we couldn’t do that for SU(2)? 

Let’s look at the trace of the transformed tensor, tr(��′) = tr(�����) = tr(�����), where in the last step 

we used the fact that the trace doesn’t change under cyclic permutation of its arguments (cyclic 

property). But what is ���? For SO(3), it is, by definition, the identity matrix. So, we have tr(��′) =
tr(��), that is, the trace remains invariant! In contrast, for SU(2) the expression ��� is not the identity 
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(�5� would be, but that doesn’t help us here) and therefore the trace is not invariant. This is why, for 

SU(2), we had 6⨂6 = 	⨁ and not 6⨁⨁. 

Like for SU(2), we can use the tensor product to find new irreducible representations of SO(3). 

Specifically, we can take the tensor product of 7 copies of the 3-dimensional (defining) representation to 

get a representation on rank-7 tensors. Then, we break this 39-dimensional representation into 

irreducibles. For example, for 7 = 2: 	⨂	 = �⨁	⨁, as we just showed, and for 7 = 3: 	⨂	⨂	 =
	⨂(�⨁	⨁) = ;⨁�⨁�⨁	⨁	⨁	⨁. As we step through 7 = 2, 3, 4,…, we get a new (27 + 1)-

dimensional irreducible representation at every step [GTNut, IV.1]! For example, we get � from 	⨂	 

and we get ; from 	⨂	⨂	. It turns out that this new irreducible representation is furnished by the 

traceless totally symmetric rank-7 tensor. 

To make the decomposition 	⨂	 = �⨁	⨁ more concrete, let’s write down possible bases for the 

three sub-representation spaces. For the 1-dimensional trace sub-representation and the 3-dimensional 

antisymmetric sub-representation, we may use 

��� = 1
√3?

1 0 00 1 00 0 1@ 				and					���,C =
1
√2?

0 0 00 0 −10 1 0 @ , ���,D =
1
√2?

0 0 10 0 0−1 0 0@ , ���,E =
1
√2?

0 −1 01 0 00 0 0@ 

and for the 5-dimensional traceless symmetric sub-representation, we may use 

��C = 1
√2?

0 0 00 0 10 1 0@ , ��D =
1
√2?

0 0 10 0 01 0 0@ , ��E =
1
√2?

0 1 01 0 00 0 0@ , ��F =
1
√2?

1 0 00 0 00 0 −1@ , ��G =
1
√6?

1 0 00 −2 00 0 1@. 
Together, these nine matrices form a basis for the full 9-dimensional tensor-product space. An SO(3) 

transformation acting on this space maps each subspace to itself. (The above basis matrices, ��J, are 

orthogonal and normalized such that tr(��J��K) = LJK.) 
Let’s determine the generators of the 5-dimensional sub-representation. A general tensor in this 5-

dimensional subspace can be written as �� = M��C + N��D + O��E + P��F + #��G. Now, let’s act on this 

tensor with the generator !� and determine what happens to the five coefficients M, N, O, P, #. The 

generator acts like ��′ = !��� + ��!��, that is, ��′ = M(!���C + ��C!��) + N(!���D + ��D!��) + O(!���E +��E!��) + P(!���F + ��F!��) + #(!���G + ��G!��). Evaluating the expressions in the parentheses yields ��� =MQ√3��G − ��FR + N(−��E) + O(��D) + P(��C) + #Q−√3��CR. Note that each basis tensor gets mapped to a 

linear combination of other basis tensors in the same 5D subspace (e.g., ��C to √3��G  ��F). Finally, we 

compare this result with the generic form ��′ = M′��C + N′��D + O′��E + P′��F + #′��G and find that the five 

coefficients transform as follows: M′ = P − √3#, N′ = O, O� = −N, P� = −M, #′ = √3M, that is, 

S
TU
P′O′#′M′N′V
WX =

S
TU
0 0 0 −1 00 0 0 0 −1
0 0 0 √3 0
1 0 −√3 0 00 1 0 0 0 V

WX

S
TU
PO#MNV
WX, 

where we have arranged the coefficients such that the 5×5 matrix exactly reproduces the 5-dimensional 

generator !Y� from our first SO(3) example! Generators !Y� and !Y� can be obtained in the same way. 

 


