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3.27 SO(3): Infinite-Dimensional Representation on Phase-Space Functions
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Next, we take the phase space known from classical Hamiltonian mechanics as our representation
space. A point (g, p) in this space is given by the (generalized) position coordinates and the canonical
momentum coordinates. It describes the state of the classical system. A transformation that acts on
such a state and leaves the Hamiltonian formalism intact is known as a canonical transformation
[NNCM, Ch. 7.3]. Here, we focus on a single particle in 3D space and thus we have § = (x,y,z)T and

P = Py Dy, p,)T together defining a 6-dimensional phase space. Furthermore, we take as the canonical
transformation ¢’ = Rq and p’ = Rp, which rotates the state of the particle about a given axis. (The fact
that p and g are transformed by the same matrix is a consequence of R being orthogonal.) See the
upper branch of the diagram.

Now, let’s consider (scalar) functions on our 6-dimensional phase space: f(q,p). As we know from the
previous example, such functions represent classical observables such as the angular momentum of the
particle about the z axis f(q,p) = Xpy — YDPx- Additional examples of phase-space functions are the

distance of the particle from the origin (G, p) = /x? + y? + z2, the momentum of the particle in the x
direction f (G, P) = px, and the kinetic energy of the particle f (4, p) = >(pz + py + pZ)/m. Not
surprisingly, functions like these furnish an infinite dimensional representation of SO(3).

How does SO(3) act on these phase-space functions? It acts by multiplying the two 3D arguments ¢ and
P by the inverse of the 3x3 rotation matrix: f'(q,5) = f(R™'[6y, 6, 60,14, R"*[6x, 0y, 6,]P). We
discussed this kind of transformation earlier for the infinite-dimensional representation of SU(2). How
can we write this transformation as a disembodied operator R(6,, 8,,6,) that acts on the function
£(d,P)? Using our informal dot notation, we write R(6,,6,,6,) = {- (R™'[6,,6,,6,] -, R"*[6,,6,,6,] -
)}, where the first dot is a place holder for the function’s name, the second dot is a place holder for the
first argument, and the third dot is a place holder for the second argument. See the lower branch of the
diagram.
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What are the elements X of our new Lie-algebra representation? Differentiating R (6,, 6,.6,) f(d,p) =
f(R™1q, R™1p) with respect of its parameters and evaluating the result at the identity element yields
Xf(G,p) = qu(ﬁ, p) - [—Xq]+ fo(ﬁ, p) - [-XP], where we made use of the chain rule and wrote the
generator of R as X, which we already know from the representation in the upper branch. Now, splitting
off the operator from the function, we get the differential operator

X=—(Xq -V +Xp-V,)

For example, for X = T, we find
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The diagram shows the remaining two basis generators. If we pack all three basis generators into a
vector, we can write more compactly (T, Ty, )T = —(g x V)q +p x V)p). These basis generators are

essentially the same ones we found earlier for the infinite-dimensional representation of SU(2), except
that now they also act on the momentum coordinates.

Note that the equation X = —(Xq Vq + Xp- Vp) tells us how to “upgrade” the generator X, acting on

phase-space coordinates, to the generator X, acting on phase-space functions. This will become
important when we come to the Poisson brackets in the next example.

To check whether an operator is orthogonal, we test if [ Rf (x)Rg(x) dx = [ f(x)g(x) dx holds for
any pair of functions f(x) and g(x). (This is analogous to the matrix test (Rx)TRy = xTy from which
RTR = I follows.) Similarly, to check whether an operator is antisymmetric, we test if

[f()Xg(x) dx = — [ Xf(x)g(x) dx holds for any pair of functions f(x) and g(x). (This is analogous
to the matrix test xT Xy = —(Xx)Ty from which X = —X7 follows.) It turns out that our rotation
operator R is orthogonal and our differential operator X is antisymmetric.

In quantum mechanics, the eigenvectors (or eigenfunctions) of the generators played an important role:
they represented the states for which the corresponding observable has a definite value. In classical
mechanics all states have a definite value and the eigenvectors (or eigenfunctions) of the generators
merely characterize the vector field that is associated with the transformation. For example, the basis
generator T, has eigenvectors (i,1,0)7, (—i,1,0)7, and (0,0, 1)T with eigenvalues i, —i, and 0,
respectively. From the last eigenvector/eigenvalue pair we conclude that the vector field has no flow in
the z direction.
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