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3.27 SO(3): Infinite-Dimensional Representation on Phase-Space Functions 

Next, we take the phase space known from classical Hamiltonian mechanics as our representation 

space. A point (�, �) in this space is given by the (generalized) position coordinates and the canonical 

momentum coordinates. It describes the state of the classical system. A transformation that acts on 

such a state and leaves the Hamiltonian formalism intact is known as a canonical transformation 

[NNCM, Ch. 7.3]. Here, we focus on a single particle in 3D space and thus we have �� = (�, 	, 
)� and �� = (�� , �
 , ��)� together defining a 6-dimensional phase space. Furthermore, we take as the canonical 

transformation ��′ = ��� and ��′ = ���, which rotates the state of the particle about a given axis. (The fact 

that �� and �� are transformed by the same matrix is a consequence of � being orthogonal.) See the 

upper branch of the diagram. 

Now, let’s consider (scalar) functions on our 6-dimensional phase space: �(��, ��). As we know from the 

previous example, such functions represent classical observables such as the angular momentum of the 

particle about the 
 axis �(��, ��) = ��
 − 	��. Additional examples of phase-space functions are the 

distance of the particle from the origin �(��, ��) = ��� + 	� + 
�, the momentum of the particle in the � 

direction �(��, ��) = ��, and the kinetic energy of the particle �(��, ��) = ��(��� + �
� + ���)/�. Not 

surprisingly, functions like these furnish an infinite dimensional representation of SO(3). 

How does SO(3) act on these phase-space functions? It acts by multiplying the two 3D arguments �� and �� by the inverse of the 3×3 rotation matrix: �′(��, ��) = �(���[��, �
, ��]��, ���[��, �
 , ��]��). We 

discussed this kind of transformation earlier for the infinite-dimensional representation of SU(2). How 

can we write this transformation as a disembodied operator ��(��, �
 , ��) that acts on the function �(��, ��)? Using our informal dot notation, we write �� ��, �
 , ��! = {	∙ (���[��, �
 , ��] ∙	, ���[��, �
, ��] ∙	)}	, where the first dot is a place holder for the function’s name, the second dot is a place holder for the 

first argument, and the third dot is a place holder for the second argument. See the lower branch of the 

diagram. 
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What are the elements ,� of our new Lie-algebra representation? Differentiating ��(��, �
, ��)	�(��, ��) =�(�����, �����) with respect of its parameters and evaluating the result at the identity element yields ,��(��, ��) = ∇II�J�(��, ��) ∙ [−,��] + ∇II�C�(��, ��) ∙ [−,��], where we made use of the chain rule and wrote the 

generator of � as ,, which we already know from the representation in the upper branch. Now, splitting 

off the operator from the function, we get the differential operator 

,� = − ,�� ∙ ∇II�J + ,�� ∙ ∇II�C!. 
For example, for , = -�, we find 

-�� = −LM0 −1 01 0 00 0 0NO�	
P ∙ Q///�///	///
R + M0 −1 01 0 00 0 0NM���
��N ∙ Q///��///�
///��RS
= −O�	 //	 	− 		 //� + �� 	 //�
 − �
 	 //��P. 

The diagram shows the remaining two basis generators. If we pack all three basis generators into a 

vector, we can write more compactly (-�� , -�
 , -��)� = −(�� ( ∇II�J + �� ( ∇II�C). These basis generators are 

essentially the same ones we found earlier for the infinite-dimensional representation of SU(2), except 

that now they also act on the momentum coordinates. 

Note that the equation ,� = −(,�� ∙ ∇II�J + ,�� ∙ ∇II�C) tells us how to “upgrade” the generator ,, acting on 

phase-space coordinates, to the generator ,�, acting on phase-space functions. This will become 

important when we come to the Poisson brackets in the next example. 

To check whether an operator is orthogonal, we test if T���(�)��U(�)	V� = T�(�)U(�)	V� holds for 

any pair of functions �(�) and U(�). (This is analogous to the matrix test (��)��	 = ��	 from which ��� = W follows.) Similarly, to check whether an operator is antisymmetric, we test if T�(�),�U(�)	V� = −T,��(�)U(�)	V� holds for any pair of functions �(�) and U(�). (This is analogous 

to the matrix test ��,	 = −(,�)�	 from which , = −,� follows.) It turns out that our rotation 

operator ��  is orthogonal and our differential operator ,� is antisymmetric. 

In quantum mechanics, the eigenvectors (or eigenfunctions) of the generators played an important role: 

they represented the states for which the corresponding observable has a definite value. In classical 

mechanics all states have a definite value and the eigenvectors (or eigenfunctions) of the generators 

merely characterize the vector field that is associated with the transformation. For example, the basis 

generator -� has eigenvectors (X, 1, 0)�, (−X, 1, 0)�, and (0, 0, 1)� with eigenvalues X, −X, and 0, 

respectively. From the last eigenvector/eigenvalue pair we conclude that the vector field has no flow in 

the 
 direction.  


