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3.28 SO(3): Representation with Functions as Generators; Poisson Bracket 

We saw earlier that Noether’s theorem associates symmetry generators with conserved phase-space 

functions. For example, the generator �� of so(3) is associated with the (single-particle) phase-space 

function ��(��, ��) = ��� − ���. This observation allows us to reformulate the representation from the 

previous example (shown again in the upper branch of the diagram) such that the Lie-algebra elements 

become phase-space functions (lower branch of the diagram). Now, the generators do not only act on 

phase-space functions but they are phase-space functions themselves (red arrow in the diagram). But 

how do these “generator functions” act on the functions in the representation space? 

From the last two examples we know the following: First, given a generator � acting on phase space, the 

associated (single-particle) phase-space function is	�(��, ��) = �� ∙ ���. Second, given a generator � acting 

on phase space, we can “upgrade” it to the generator �� = −(��� ∙ ∇���� − ��� ∙ ∇����) acting on (single-

particle) phase-space functions. Now, we combine these two facts and express �� in terms of �. Taking 

the gradient of the phase-space function �(��, ��) = �� ∙ ��� with respect to ��, we get ∇����� = ���, which is 

a piece of the expression for ��. Rewriting �(��, ��) = �� ∙ ����, and taking the gradient with respect to ��, 

we get ∇����� = ����. Using of the antisymmetry of �, we can write ∇����� = −���, which is the second 

piece of the expression for ��. Inserting the two pieces into the expression for �� yields �� = −∇����� ∙ ∇���� +
∇����� ∙ ∇����, which expresses the generator �� in terms of the phase-space function �, as desired. When 

acting with this generator on another phase-space function �, we get 

��� = ∇����� ∙ ∇����� − ∇����� ∙ ∇����� = � ������
��
��� −

��
���

��
��� � , 

which is exactly the definition of the Poisson bracket: !�, �"! We have thus succeeded in reformulating 

the infinite-dimensional representation of so(3) such that the Lie-algebra elements �� become phase-

space functions �(��, ��). The generator functions � act on the representation-space functions � by 

means of the Poisson bracket �′ = !�, �". Equivalently, we can write �′ = ���, where �� = !�, ∙	". 
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Let’s try this out for the generator function ��(��, ��) = ��� − ���. It acts on phase-space functions like 

!��� − ��� , ∙	", which evaluates to 

�(��� − ���)��
�

��� + �(��� − ���)��
�

��� − �D��� − ���E���
�
�� − �D��� − ���E���

�
��

= �� �
��� − �� �

��� + � �
�� − � �

��. 
This matches exactly the differential operator ���, as expected. For the other two basis-generator 

functions, �� and ��, we get analogous results. 

Next, we need to find the appropriate Lie-bracket operation for our generator functions. In the case of 

the differential operators, ��G, it was the commutator. What is the corresponding operation for 

generator functions, �G(��, ��)? As we might guess from our experience with the cross product, it is the 

Poisson bracket again! To show this, we evaluate  2��H, ��G3 = ��H��G − ��G��H = !�H, !�G, ∙	"" − !�G, !�H, ∙
	"" = !!�H, �G", ∙	", where we used the Jacobi identity in the last step.  

Can we write the elements of the Lie group in terms of the generator functions introduced above? Yes, 

we exponentiate the generators, as usual! For example, the basis generator ��(��, ��) produces the 

transformation %& = exp(!��(��, ��), ∙	"$�), which describes a rotation of a phase-space function by the 

angle $� about the 0 axis (see the lower branch of the diagram). To make sense of this exponential, we 

let it act on the phase-space function �(��, ��) and expand it into the power series �5 = %&� = � +
!��, �"$� + L

M	N��!��, �"O$�B +⋯. 

The Poisson bracket is well known from classical Hamiltonian mechanics [TM, Vol. 1, Ch. 10; NNCM, Ch. 

5]. In the Hamiltonian framework, phase-space functions play two roles. First, they represent the 

observables of the theory and second, they represent generators of transformations. In the latter case, 

they act on observables by means of the Poisson bracket. In our example, the three phase-space 

functions ��, ��, and �� are the observables for the �-, �-, and 0-component of the angular momentum. 

When put into Poisson brackets, they generate rotations about the �-, �-, and 0-axis. 

In the Hamiltonian framework, the time evolution of an observable � is given by the differential 

equation ��/�Q = {�, ℎ}, where ℎ is the Hamiltonian function, which acts as the generator of time 

translation. Thus, an observable is conserved (= time independent) if it “Poisson commutes” with the 

Hamiltonian: {�, ℎ} = 0. Furthermore, a generator � acts on the system like {ℎ, �}, where ℎ is again the 

Hamiltonian function, but now representing the system’s law of time evolution (which also happens to 

be the energy observable). Thus, a generator generates a symmetry (= law of time evolution is invariant) 

if it “Poisson commutes” with the Hamiltonian: {ℎ, �} = 0. In other words, a generator of a symmetry 

and its associated conserved observable are represented by the same phase-space function �(�, �). This 

feature of Hamiltonian mechanics motivated the representation discussed in this example. See the 

Appendix “Symmetry and Conservation in Classical Hamiltonian Mechanics” for more information. 

 

 

 


