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3.26 SO(3): Application to Classical Angular Momentum; Noether’s Theorem 

Next, let’s have a look at an application of SO(3) to classical mechanics. In classical mechanics, the 

(generalized) position coordinates, which represent the degrees of freedom of the system, define a 

point, �, in configuration space. A transformation that acts on such a point in configuration space is 

known as a point transformation [NNCM, Ch. 7.2]. Here, we focus on a single particle in 3D space and 

thus � is the 3D vector �� = (�, �, �)
. Furthermore, we take as the point transformation ��′ = ���, which 

rotates the position of the particle about a given axis. We know from the previous example that the 

generator of such a transformation can be written as either a matrix  (upper branch of the diagram) or 

an axis vector ��� (lower branch of the diagram). 

Noether’s theorem says that for every continuous symmetry there is a conserved quantity. For the case 

where the symmetry is given by a linear point transformation acting on a single particle, the conserved 

quantity (= Noether charge) is given by � = �� ∙ ��, where  is the generator of the symmetry 

transformation, �� = (�, �, �)
 is the position of the particle, and �� = (�� , �� , ��)
 is the canonical 

momentum (conjugate to ��) of the particle. This formula arises from classical Lagrangian mechanics, 

which derives the equations of motion from an action principle. For more details, see the Appendices 

“Symmetry and Conservation in Classical Lagrangian Mechanics” and “Noether’s Theorem for Particle 

Theories” or [TM, Vol. 1, Ch. 7; NNCM, Ch. 10.4]. In Newtonian mechanics, which starts from the 

equations of motion (without the use of an action principle), this relationship is not at all obvious. 

What is the conserved quantity � for the case of 3D rotational symmetry? We can write an arbitrary 

generator of 3D rotation as  = ���� + ���� + ����, where the �� are the basis generators of SO(3) 

and ��� = (��, �� , ��)
 is the unit vector pointing along the axis of rotation. Thus, we have � = �� ∙ �� =�� ∙ (���� + ���� + ����)��. From the previous example, we know that this can be rewritten more 

compactly using the cross product as � = �� ∙ (��� × ��). The entire expression is the scalar triple product 

of the vectors ��, ���, and ��, which can be rewritten again as � = ��� ∙ (�� × ��). Finally, this expression can 
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be interpreted as the projection of the classical angular momentum, �� × ��, on the axis of rotational 

symmetry, ���, or more succinctly, the angular momentum (component) in the direction of the axis of 

rotational symmetry: :;�� = ��� ∙ (�� × ��)! For example, if the axis of rotational symmetry points in the � 

direction, ��� = (0, 0, 1)
, the conserved quantity is the angular momentum along the � axis: :� = ��� −���. If the symmetry holds for any axis ��� (for an isotropic system), the entire angular-momentum vector <� = �� × �� is conserved, that is, the three quantities :�, :�, and :� are conserved individually. 

Note that the conserved quantity � = �� ∙ �� is a function of position �� and momentum ��. Together, �� 
and �� define the state of the classical system. The space of all possible states, (��, ��), is known as the 

phase space. Thus, Noether’s theorem tells us how to construct a conserved phase-space function from 

a given symmetry generator: �(��, ��) = �� ∙ ��. For example, the angular momentum :�(��, ��) is the 

conserved phase-space function that follows from the symmetry generator ��: 

:�(��, ��) = =������> ∙ =
0 −1 01 0 00 0 0>?

���@ = ��� − ��� . 
Incidentally, we can reverse this procedure and extract the symmetry generator from a conserved 

phase-space function by calculating  = (∇���C(∇���D�(��, ��))
)
, where ∇���C= ($/$�, $/$�, $/$�)
 and ∇���D=($/$�� , $/$�� , $/$��)
. For example, given the phase-space function :�(��, ��) = ��� − ���, we find 

 = (∇���C(∇���D:�(��, ��))
)
 = (∇���C(0,−�, �))
 = =0 0 00 0 −10 1 0 >, 
which is exactly the basis generator ��. 

We are now in a position to compare quantum-mechanical and classical angular momentum. Both 

derive from the generator of 3D space rotation, but there are some important differences: 

• In quantum mechanics, the generator is multiplied by Fℏ and the observed value is one of its 

eigenvalues. These eigenvalues are discrete (quantized) and which one is observed depends 

probabilistically on the state H of the system. 

• In classical mechanics, the generator is mapped to a phase-space function. The observed value is 

given by this function evaluated for the state (�, �) of the system. The observed value is 

continuous and deterministic. 

If we are interested in the expectation value of a quantum observable only, we can describe it by a 

(continuous) function of H. For example, the expectation value of the �-component of the angular 

momentum is 〈J�〉 = HLJ�H, which is analogous to the classical expression :� = �
���.  


