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3.25 SO(3): Defining Representation with Vectors as Generators; Cross Product 

Instead of representing the elements of so(3) by the usual 3×3 matrices (upper branch of the diagram), 

we can also represent them by 3-component column vectors (lower branch of the diagram). Remember, 

so(3) is just a 3-dimensional vector space plus a Lie-bracket operation. Now, the Lie-algebra elements do 

not only act on vectors but they are vectors themselves (red arrow in the diagram). But how do these 

“Lie-algebra vectors” act on the vectors in the representation space? 

To represent a Lie-algebra matrix by a column vector, we expand the matrix � into a linear combination 

of the basis generators, � = ���� + ���� + ����, and put the three coefficients into a column vector �	
 = (��, �� , ��)�. These vectors are now our new Lie-algebra elements. Next, we need to find a vector-

vector operation that reproduces the results of the matrix-vector multiplication �
′ = ��
. Amazingly, the 

good old cross product fits the bill: �
′ = �	
 × �
. More explicitly, we can write 

� 0 −�� ���� 0 −��−�� �� 0 � ����� = ������� � × ����� = ���� − ������ − ������ − ����. 
But we are not done yet, we also need to find the new Lie-bracket operation. In the case of matrix 

elements, it was given by the commutator [�, �] = �� − ��. What is the corresponding operation for 

our vector elements? Surprisingly, the cross product does this job too:  
 × !	
 = "
 corresponds to [�, �] = #, where  
, !	
, "
 are the vectors corresponding to the matrices �, �, #, respectively. More 

explicitly, we can write the commutator [�, �] in terms of  
 and !	
 as 

$� 0 − �  � � 0 − �− �  � 0 � , � 0 −!� !�!� 0 −!�−!� !� 0 �% = � 0  �!� −  �!�  �!� −  �!� �!� −  �!� 0  �!� −  �!� �!� −  �!�  �!� −  �!� 0 � 
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and identify the components of the resulting matrix # with the components of "
 as "� =  �!� −  �!�, "� =  �!� −  �!�, and "� =  �!� −  �!�, which is exactly the cross product "
 =  
 × !	
. 

What is the meaning of the vectors �	
 in our reformulated Lie algebra? Remember that the elements of a 

Lie algebra (= generators) correspond to infinitesimal transformations, in this case, infinitesimal 3D 

rotations. To describe such a rotation, all we need to specify is the axis of rotation, and this is exactly 

what the vector �	
 does! (Note that this works only in 3D space. In 2D space, we rotate about a point and 

in 4D space, we rotate about a 2D plane, not about an axis.) 

Why do the vectors �	
 in the Lie algebra act on the representation space by means of the cross product? 

If we pick an element of the Lie algebra and let it act on all points (vectors) in the representation space, 

it produces a vector field. The flow of this vector field describes the transformations generated by the 

Lie-algebra element. Now, let’s pick an axis vector �	
 and then take the cross product of �	
 with all 

vectors �
. What do we get? For points �
 on the axis, the product vectors are zero; for points �
 away 

from the axis, the product vectors point in the direction orthogonal to the plane spanned by the axis and 

the point; as the points �
 get farther away from the axis, the product vectors get larger. We can see now 

that the vector field, �	
 × �
, describes rotation about the axis �	
! The operator �	
 × ∙ , where the dot is a 

place holder for the acted-upon vector, is the generator of rotation about the axis �	
. 

Why is the Lie bracket in this reformulation realized by the cross product? The Lie bracket describes how 

infinitesimal transformations in the Lie group fail to commute. In the case of 3D rotations, this means 

that if we “commute” two infinitesimal rotations (e.g., we make an infinitesimal rotation about the � 

axis followed by one about the � axis and then undo them in the opposite order), we end up with an 

infinitesimal rotation about the orthogonal direction (e.g., about the � axis). The cross product is tailor-

made for this: taking the cross product of two vectors yields a vector in the orthogonal direction! 

Can we write the elements of the Lie group in terms of the axis-vector generators introduced above? 

Yes, we exponentiate the generators, as usual! Let’s first review the familiar case of a Lie algebra with 

matrix elements. Picking a rotation by +� about the z axis, we get the transformation ( = exp(��+�). To 

interpret this, we expand the matrix exponential into the power series ( = G + ��+� + HI	��J+�J +⋯. 

Thus, a vector transforms like �
′ = (�
 = �
 + (���
)+� +
H

I
(��

J�
)+�
J +⋯. Now, we follow the same logic 

for the Lie algebra with vector elements. Picking a rotation by +� about the z axis, we get the 

transformation (> = exp[(6
� ×	∙	)+�]. But how are we to interpret the incomplete cross product in the 

exponent? We expand the exponential function into a power series (> = G + (6
� ×	∙	)+� +
H

I
(6
� × (6
� ×	∙

	))+�
J +⋯. Thus, a vector transforms like �
′ = (>�
 = �
 + (6
� × �
)+� +

H

I
(6
� × (6
� × �
))+�

J +⋯. Now, all 

the cross products have two operands and make sense! 

Let’s take a step back and think about how the cross product emerged. We started with a 3D vector 

space and asked: “what transformations preserve the dot product?” Answer: 3D rotations. Then, we 

asked: “what generates the vector fields that characterize these 3D rotations?” Answer: the cross 

product with the axis vector!  

  


