
E. Sackinger: Groups in Physics (Draft Version 0.2, September 30, 2023) 

 

61 

 

3.21 SO(3): The Group of Rotations in 3-Dimensional Euclidean Space 

Let’s move on to the Lie group SO(3)! This group, or rather its defining (3-dimensional) representation, 

consists of all 3×3 orthogonal matrices � with determinant one. The S in SO(3) stands for special, 

indicating that det(�) = 1 and the O stands for orthogonal, meaning that the real matrices � satisfy 

�	� = 
. Note that an orthogonal matrix is a unitary matrix (��� = 
) that is also real (�� = �	). As we 

will see shortly, SO(3) is closely related to our old friend SU(2). 

We know that the unitary transformations preserve the Hermitian inner product. What about the 

orthogonal transformations? They preserve the Euclidean inner product (or dot product) of two vectors: 

(�
)	�� = 
	�	�� = 
	�. As a consequence, lengths of vectors and angles between vectors remain 

invariant. Moreover, the origin stays in place because the transformations are linear. Therefore, the 

orthogonal transformations are simply 3D rotations and/or reflections about the origin. The additional 

constraint “determinant one” eliminates the reflections, leaving us with only the proper rotations. We 

may parametrize SO(3) transformations by the three rotation angles ��, ��, and ��, as we did for SU(2). 

SO(3) transformations, which rotate 3D vectors, are much easier to visualize than SU(2) transformations, 

which were churning two complex numbers! 

Note that it is just a coincidence that SO(3) is a three-dimensional manifold (= described by three 

parameters) and its defining representation is also three dimensional (= acts on 3D vectors). In general, 

these two dimensions have nothing to do with each other! 

There are several ways of parametrizing an SO(3) matrix. One possibility is to write the matrix 

�(��, �� , ��) as a product of three matrices, where each matrix depends on only a single parameter: 

��(��) ∙ ������ ∙ ��(��), as shown in the diagram (upper branch). In this case, � first rotates about the 

� axis, then about the � axis, and finally about the	
 axis, but parametrizations that use other sequences 

are equally valid. This matrix looks familiar to us: we encountered it before as the 3-dimesional 

representation of SU(2) acting on real vectors! 
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To find the basis generators of the corresponding Lie algebra, so(3), we take the derivatives of the 

transformation matrix with respect to the parameters �? and evaluate the results at �? � 0. Since we are 

now focusing on classical mechanics and are no longer interested in the generators being Hermitian, we 

don’t multiply the result by @. The resulting basis generators are the real antisymmetric matrices &�, &�, 

and &� shown in the diagram. These matrices can be expressed in terms of the 3-dimensional Levi-Civita 

symbol as /&?1AB = C?BA, where @ labels the matrix (&�, &2, &� being the same as &�, &�, &�) and D, E label 

the matrix component. The commutation relations among the three basis generators are /&� , &�1 = &�, 

/&� , &�1 = &�, and /&�, &�1 = &�, which is exactly the same that we had for su(2) before we multiplied the 

generators by @! In fact, the so(3) and su(2) Lie algebras are isomorphic. 

What happens if we rotate an object by a small amount about the 
 axis, then rotate it by a small 

amount about the � axis, then undo the rotation about the 
 axis, and finally undo the rotation about 

the � axis in that order? No, we are not back to where we started. We end up with a small rotation 

about the � axis! This is the meaning of the commutation relation /&� , &�1 = &�. 

Although the so(3) and su(2) Lie algebras are isomorphic, the corresponding Lie groups, SO(3) and SU(2), 

are not! For SO(3) a 360° rotation is the same thing as doing nothing (the identity transformation). But, 

as we know, for SU(2) we need a 720° rotation to get back to where we started. In fact, for every 

element in SO(3) there are two corresponding elements in SU(2): a rotation by � and a rotation by � +
360°. We say that SU(2) double covers SO(3). SO(3) and SU(2) are locally isomorphic but globally 

different. 

Like SU(2), SO(3) has infinitely many representations. Besides the trivial 1-dimensional representation 

(which always exists) and the defining 3-dimensional representation, there is also a 5-dimensional 

representation (see the lower branch of the diagram), a 7-dimensional representation, etc. (cf. 

http://visuallietheory.blogspot.com/2013/). However, unlike SU(2), SO(3) doesn’t have any even-

dimensional irreducible representations! How is the 5-dimensional representation shown in the diagram 

related to the 5-dimensional (spin-2) representation of SU(2), which we encountered earlier? They are 

related by a similarity transformation and thus are equivalent. 

The S in the group names SO(3) and SU(2) indicates that the transformation matrix has determinant one. 

Yet, the effects of this condition on SO(3) and SU(2) are quite different. The group U(2), without the S, 

has four basis generators. But because one generator commutes with all the others, it is natural to break 

the group up into a 1-dimensional group, U(1), and a 3-dimensional group, SU(2), which then can be 

dealt with separately. In fact, we may write, somewhat sloppily, U(2) = SU(2) × U(1) (the mathematically 

correct formula is U(2) = (SU(2)/ℤ2) × U(1) [GTNut, p. 253]). We will discuss the group U(1) later. 

On the other hand, the group O(3), without the S, consists of two components: the proper (= non-

reflected) rotations and the improper (= reflected) rotations. The elements in the second component 

cannot be reached in a continuous manner from the identity element. Only by eliminating the second 

component, that is, by restricting to SO(3), do we get a connected Lie group. We may write O(3) = SO(3) 

×	ℤ2, where ℤ2 is the cyclic group with two elements: the identity element and the reflection element. 

We will discuss ℤ2 in more detail later. (In related matters, SU(2) and SO(3) are so-called simple Lie 

groups because they are free of nontrivial normal subgroups; in contrast, U(2) and O(3) are not simple 

Lie groups.) 

  


