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5.16 SO+(1,3): Vector-Field Representation 

After the scalar field, we now turn to the vector field ��(��), where �� = (�, �, 	, 
)�, as before. Now, the 

field value is a real 4-vector, �� = (��, �, ��, ��)�, that transforms under the defining representation of 

SO+(1,3). An example of such a vector field is the electromagnetic 4-potential. (Besides satisfying the 

SO+(1,3) space-time symmetry, the electromagnetic potential field also satisfies a gauge symmetry and 

thus is a special vector field.) The upper branch of the diagram shows again the scalar-field 

representation of SO+(1,3) for reference and the lower branch shows the vector-field representation. 

How does this vector field transform under SO+(1,3)? From the vector-field representations of SO(3) we 

know that this transformation consists of two parts: a part for the 4-vector at each point in space-time 

and a part for the field structure, which is a function of space-time. A 4-vector by itself transforms like 

��� = Λ�(��, ��)��, where Λ�(��, ��) is the defining representation of SO+(1,3). A scalar field in space-time 

transforms like Φ′(��) = Φ(Λ��[��, ��]��). Combining the two parts, we find that a 4-vector field 

transforms like ���(��) = Λ�[�� , ��]��(Λ��[��, ��]��). Using our informal dot notation to separate the 

operator from the vector field, ��(��), (and suppressing the parameters) we have Λ� = Λ�{	∙ 	 �Λ�� 	 ∙	 }, 
where the first dot is a placeholder for the field’s name and the second dot is a placeholder for its space-

time argument. This operator acts on the field like Λ�	��(��) = Λ���(Λ����) (see the lower branch of the 

diagram). 

As discussed earlier, the six basis generators of the scalar-field representation are "# =
$
%
	&#'�('� and 

)# = (�#, where (*+ = �*,+ − �+,* and we used tensor-index notation. To bring these operators 

into a more familiar form, we can rewrite (using vector-matrix notation) the ( matrix  as ( = �� ∧ /∇11�, 
where / = diag(+1,−1,−1,−1), ∇11�	= (,/,�, ,/,�, ,/,	, ,/,
)�, as usual, and the wedge ∧ 

represents the exterior product defined by 9� ∧ :1� ∶= 9�:1�� − (9�:1��)�. Thus, the six basis generators can 

also be written as "# =
$
%
	&#'�<�� ∧ /∇11�=

'�
 and )# = <�� ∧ /∇11�=

�#
 (see the lower branch of the diagram). For 
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more information about the exterior product, see the Appendix “The Exterior Product; Area and Volume 

Elements”. 

When we discussed the infinite-dimensional representations of SU(2) and SO(3), we wrote the three 

basis generators as "1T = −�T D ∇11T (or UT = −V�T D ∇11T). How is this related to the expression derived above? 

Instead of taking the cross product, "1T = −�T D ∇11T, we could have taken the exterior product resulting in 

the 3×3 matrix (W = −�T ∧ ∇11T from which we can extract the three basis generators: "? = (W��, "@ = (W�, "A = (W�. In fact, the 3-vector "1T is the Hodge dual of the 3×3 matrix (W  and can be written as "# =$%	&#'�(W'�. See the Appendix “The Hodge Dual in Euclidean Space” for more information. 

What are the six basis generators of the vector-field representation? From our earlier discussion of 3-

vector fields, we know that these generators consist of two parts: a part for the 4-vector at each point in 

space-time and a part for the field structure in space-time. The first part is given by the six 4×4 basis 

generators of the defining representation, which we now call "R# and )�#. The second part is given by the 

six basis generators of the scalar-field representation: "# = $%	&#'�('� and )# = (�#. Combining the two 

parts, we get the basis generators of the vector-field representation: "Q# = "R# 6 $%	&#'�('�S and )�# =)�# 6(�#S, where S is the 4×4 identity matrix, which multiplies the differential operators of the scalar-

field representation to make them compatible with the matrices of the vector representation. Using 

vector-matrix notation, we can also write the basis generators of the vector-field representation as "Q# ="R# 6 $%	&#'�<�� ∧ /∇11�='� and )�# = )�# 6 <�� ∧ /∇11�=�#S (see the lower branch of the diagram). For example, the 

generator )�A for a boost in the 
 direction evaluates to 

)�A = X0 0 0 10 0 0 00 0 0 01 0 0 0Z 6 [−
 ,,� − � ,,
\X
1 0 0 00 1 0 00 0 1 00 0 0 1Z =

]
^̂̂
^̂_
−
 ,,� − � ,,
 0 0 1

0 −
 ,,� − � ,,
 0 0
0 0 −
 ,,� − � ,,
 0
1 0 0 −
 ,,� − � ,,
`

aaa
aab. 

 

How can we express a general generator IO of the vector-field representation? Given the generator Id ="R#�# 6 )�#�# of the 4-vector representation, we know that we can express the corresponding generator 

of the scalar-field representation as I = $%	Id*+(*+ and if we put this into the exponential map, we 

obtain the associated scalar-field transformation Λ = exp�$%	Id*+(*+ . Similarly, we can express a 

general generator of the vector-field representation as IO = Id 6 $%	Id*+(*+S and if we put this into the 

exponential map, we obtain the associated vector-field transformation Λ� = exp�Id 6 $%	Id*+(*+S	 . 

Finally, we should point out that physicists like to include a factor V as part of the generators and then 

put a −V into the exponent of the exponential map to keep things consistent. Therefore, they define h*+ = V(�*,+ − �+,*) from which they can pick the basis generators U# and i# in the same way we 

picked "# and )#  from ( [PfS, Ch. 3.7.11]. To remain consistent, they write a scalar-field transformation 

as Λ = exp�−	$%	VId*+h*+ . 


