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5.16

SO*(1,3): Vector-Field Representation
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After the scalar field, we now turn to the vector field fT(J?), where X = (t,x,y, Z)T, as before. Now, the

field value is a real 4-vector, A= (Ao, A1, Ay, A3)T, that transforms under the defining representation of
S0O*(1,3). An example of such a vector field is the electromagnetic 4-potential. (Besides satisfying the
S0O*(1,3) space-time symmetry, the electromagnetic potential field also satisfies a gauge symmetry and
thus is a special vector field.) The upper branch of the diagram shows again the scalar-field
representation of SO*(1,3) for reference and the lower branch shows the vector-field representation.

How does this vector field transform under SO*(1,3)? From the vector-field representations of SO(3) we
know that this transformation consists of two parts: a part for the 4-vector at each point in space-time
and a part for the field structure, which is a function of space-time. A 4-vector by itself transforms like

A = A6y, d)k)/f, where A(6y, ) is the defining representation of SO*(1,3). A scalar field in space-time
transforms like ®'(X) = ®(A~[6y, ¢« ]%). Combining the two parts, we find that a 4-vector field
transforms like /T’(J?) = A[B, ¢>k]/f(ﬂ_1[9k, ¢ ]x). Using our informal dot notation to separate the
operator from the vector field, /f()?), (and suppressing the parameters) we have A = A{ - (K‘l . )},
where the first dot is a placeholder for the field’s name and the second dot is a placeholder for its space-

time argument. This operator acts on the field like A ff(:?) = Kﬁ(?\‘lf) (see the lower branch of the
diagram).

As discussed earlier, the six basis generators of the scalar-field representation are T; = %sijijk and
U; = WO where WK = x#3¥ — xV3* and we used tensor-index notation. To bring these operators
into a more familiar form, we can rewrite (using vector-matrix notation) the W matrix asW = x A nﬁ,
-1,-1), V= (8/0t,0/0x,0/0y,0/02)7, as usual, and the wedge A

represents the exterior product defined by a A b:=ab’ — (&ET)T. Thus, the six basis generators can

where n = diag(+1, -1,
also be written as T; = 2 & [x A rﬁ]jk and U; = [ A n—VA]Oi (see the lower branch of the diagram). For
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more information about the exterior product, see the Appendix “The Exterior Product; Area and Volume
Elements”.

When we discussed the infinite-dimensional representations of SU(2) and SO(3), we wrote the three

basis generators as T=—-%xV (orf = —ixX X V). How is this related to the expression derived above?
Instead of taking the cross product, T =—-%x V, we could have taken the exterior product resulting in
the 3x3 matrix W = —% A V from which we can extract the three basis generators: Ty, = W3, T, = Wy,

T, = W,. In fact, the 3-vector T is the Hodge dual of the 3x3 matrix W and can be written as T; =
%sijijk. See the Appendix “The Hodge Dual in Euclidean Space” for more information.

What are the six basis generators of the vector-field representation? From our earlier discussion of 3-
vector fields, we know that these generators consist of two parts: a part for the 4-vector at each point in
space-time and a part for the field structure in space-time. The first part is given by the six 4x4 basis
generators of the defining representation, which we now call T; and U;. The second part is given by the
six basis generators of the scalar-field representation: T; = %sijijk and U; = W%, Combining the two
parts, we get the basis generators of the vector-field representation: T; = T; + %sijijkI and U; =

l7i + WO, where I is the 4x4 identity matrix, which multiplies the differential operators of the scalar-
field representation to make them compatible with the matrices of the vector representation. Using
vector-matrix notation, we can also write the basis generators of the vector-field representation as T‘i =
T+ Legje[x A nﬁ]jk and U; = U; + [X A rﬁ]oil (see the lower branch of the diagram). For example, the

generator U, for a boost in the z direction evaluates to
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How can we express a general generator @ of the vector-field representation? Given the generator ® =
T;0; + U;¢; of the 4-vector representation, we know that we can express the corresponding generator
of the scalar-field representation as w = %&)\WW‘“’ and if we put this into the exponential map, we
obtain the associated scalar-field transformation A = exp(% @WW’“’). Similarly, we can express a
general generator of the vector-field representation as @ = @ + % @WW’“’I and if we put this into the

exponential map, we obtain the associated vector-field transformation A = exp(a + % W WH'I )

Finally, we should point out that physicists like to include a factor i as part of the generators and then
put a —i into the exponent of the exponential map to keep things consistent. Therefore, they define
MMV = j(x*dV — xVd*) from which they can pick the basis generators J; and K; in the same way we
picked T; and U; from W [PfS, Ch. 3.7.11]. To remain consistent, they write a scalar-field transformation
as A = exp(—1i@,, M*).
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