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5.18 SO+(1,3): Tensor-Product Representations; Decomposition 

Given the 4-dimensional defining representation of SO+(1,3), we can construct a 16-dimensional tensor-

product representation on 4×4 tensors, just like we did for SO(4). But there is a twist: covectors now 

transform differently from vectors and hence there are four different ways to form a tensor-product 

space: �⨂�, �∗⨂�, �⨂�∗, and �∗⨂�∗, where � is the vector space and �∗ is the dual vector space. 

Thus, there are four (equivalent) flavors of this tensor-product representation. 

How does the Lorentz transformation Λ act on these tensors? Let’s start with the �⨂� product space. 

As usual, we construct a prototype tensor by taking the tensor product of two vectors � = ��	; we 

know how the two vectors transform: �′ = �′�′	 = (Λ�)(Λ�)	 = Λ��	Λ	 and thus we can infer how 

the tensor transforms: �′ = Λ�Λ	 (see the lower branch of the diagram). Using tensor-index notation, a 

tensor in the �⨂� product space is written with two upstairs indices and transforms like �′� =
Λ		� ���Λ		�� = Λ		� Λ		�� ��� [TM, Vol. 3, Ch. 6.2.1]. 

For the other three product spaces, we follow the same line of thought. For example, for the �∗⨂�∗ 
product space, we construct a prototype from two covectors � = �̅��	; we know how the two covectors 

transform: �′ = �̅′��′	 = (Λ��	�̅)(Λ��	��)	 = Λ��	�̅��	Λ�� and thus we can infer how this tensor 

transforms: �′ = Λ��	�Λ��. Using tensor-index notation, we write ��� = Λ		����Λ�		� = Λ		�Λ�		����. 

From our discussion of SO(4), we know that its 16-dimensional tensor-product representation is 

reducible into a 10-dimensional symmetric and a 6-dimensional antisymmetric representation. This is 

also true for the general linear group GL(4) and thus for any of its subgroups, including SO+(1,3). 

An example of a physical quantity that transforms under the antisymmetric tensor representation of 

SO+(1,3) is the electromagnetic field-strength tensor (a.k.a. Faraday tensor) ��. This tensor and its dual, 

��, can be written as 
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where I$ , I% , I& are the components of the electric field vector INO and J$ , J% , J& are the components of 

the magnetic field vector JNO; as usual, we chose units in which P = 1 [QFTGA, Ch. 5.2]. 

An example of a physical quantity that transforms under the symmetric tensor representation of 

SO+(1,3) is the energy-momentum (density) tensor (a.k.a. stress-energy tensor) -�. For an 

electromagnetic field, we have -� = �Q�		Q� − R
S	���QT�QT [TM, Vol 3, Ch. 11.5.3]. This tensor and its 

dual, -�, can be written as 

(-�) =
F
GH
U V$ V% V&V$ −W$$ −W$% −W$&V% −W$% −W%% −W%&V& −W$& −W%& −W&&K

LM , (-�) =
F
GH

U −V$ −V% −V&−V$ −W$$ −W$% −W$&−V% −W$% −W%% −W%&−V& −W$& −W%& −W&&K
LM, 

where U = R
X	(|INO|= + |JNO|=) is the energy density, V$, V% , V& are the components of the Poynting vector, 

VO = INO � JNO, quantifying the momentum density, W.. are the normal stress components, and W./ for Z ≠ \ 
are the shear stress components of the stress tensor W = INOINO	 + JNOJNO	 − U] [TM, Vol. 3, Ch. 11.5.3]. 

Just like for SO(4), the 10-dimensional symmetric tensor representation of SO+(1,3) breaks up into a 9-

dimensional traceless symmetric representation and a 1-dimensional (trivial) representation for the 

trace. Note that for SO+(1,3), the trace is given by �		 = ���� = ��� − ��� − �== − ���, not the 

simple diagonal sum we are used to from the orthogonal case. For the above electromagnetic energy-

momentum tensor, the trace U + W$$ + W%% + W&& evaluates to zero: RX	(|INO|= + |JNO|=) + |INO|= + |JNO|= −
^
X	(|INO|= + |JNO|=) = 0. 

Just like for SO(4), the antisymmetric tensor representation of SO+(1,3) is equivalent to the adjoint 

representation, both of which are six dimensional. However, because the action on the tensor-product 

space, �′ = Λ�Λ	, and the action on the space of generators (which are not necessarily antisymmetric), 

�′ = Λ�Λ��, are different for SO+(1,3), this is not as obvious as for the orthogonal case. 

Finally, just like for SO(4), the 6-dimensional antisymmetric tensor representation of SO+(1,3) breaks up 

into two 3-dimensional representations, known again as the self-dual and anti-self-dual representations. 

This will be the subject of the next example. 

In summary, the full decomposition of the tensor-product representation of SO+(1,3) into irreducibles is 

_⨂_ = `⨁b⨁bc⨁d. In terms of irreducible representations, SO+(1,3) looks just like SO(4). Indeed, we 

will see later that the finite-dimensional representations of the two groups can be classified and labeled 

in the same way! 

 

  


