5.18 $\mathrm{SO}^{+}(1,3)$: Tensor-Product Representations; Decomposition

Given the 4 -dimensional defining representation of $\mathrm{SO}^{+}(1,3)$, we can construct a 16 -dimensional tensorproduct representation on 4×4 tensors, just like we did for SO(4). But there is a twist: covectors now transform differently from vectors and hence there are four different ways to form a tensor-product space: $V \otimes V, V^{*} \otimes V, V \otimes V^{*}$, and $V^{*} \otimes V^{*}$, where V is the vector space and V^{*} is the dual vector space. Thus, there are four (equivalent) flavors of this tensor-product representation.

How does the Lorentz transformation Λ act on these tensors? Let's start with the $V \otimes V$ product space. As usual, we construct a prototype tensor by taking the tensor product of two vectors $Y=x y^{T}$; we know how the two vectors transform: $Y^{\prime}=x^{\prime} y^{\prime T}=(\Lambda x)(\Lambda y)^{T}=\Lambda x y^{T} \Lambda^{T}$ and thus we can infer how the tensor transforms: $Y^{\prime}=\Lambda Y \Lambda^{T}$ (see the lower branch of the diagram). Using tensor-index notation, a tensor in the $V \otimes V$ product space is written with two upstairs indices and transforms like $Y^{\prime \mu \nu}=$ $\Lambda^{\mu}{ }_{\kappa} Y^{\kappa \lambda} \Lambda^{\nu}{ }_{\lambda}=\Lambda^{\mu}{ }_{\kappa} \Lambda^{v}{ }_{\lambda} Y^{\kappa \lambda}$ [TM, Vol. 3, Ch. 6.2.1].

For the other three product spaces, we follow the same line of thought. For example, for the $V^{*} \otimes V^{*}$ product space, we construct a prototype from two covectors $Y=\bar{x} \bar{y}^{T}$; we know how the two covectors transform: $Y^{\prime}=\bar{x}^{\prime} \bar{y}^{T T}=\left(\Lambda^{-1 T} \bar{x}\right)\left(\Lambda^{-1 T} \bar{y}\right)^{T}=\Lambda^{-1 T} \bar{x} \bar{y}^{T} \Lambda^{-1}$ and thus we can infer how this tensor transforms: $Y^{\prime}=\Lambda^{-1 T} Y \Lambda^{-1}$. Using tensor-index notation, we write $Y_{\mu \nu}^{\prime}=\Lambda_{\mu}{ }^{\kappa} Y_{\kappa \lambda} \Lambda_{\nu}{ }^{\lambda}=\Lambda_{\mu}{ }^{\kappa} \Lambda_{\nu}{ }^{\lambda} Y_{\kappa \lambda}$.

From our discussion of SO(4), we know that its 16-dimensional tensor-product representation is reducible into a 10 -dimensional symmetric and a 6 -dimensional antisymmetric representation. This is also true for the general linear group $\mathrm{GL}(4)$ and thus for any of its subgroups, including $\mathrm{SO}^{+}(1,3)$.

An example of a physical quantity that transforms under the antisymmetric tensor representation of $\mathrm{SO}^{+}(1,3)$ is the electromagnetic field-strength tensor (a.k.a. Faraday tensor) $F^{\mu \nu}$. This tensor and its dual, $F_{\mu \nu}$, can be written as
E. Sackinger: Groups in Physics (Draft Version 0.2, September 30, 2023)

$$
\left(F^{\mu \nu}\right)=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right), \quad\left(F_{\mu \nu}\right)=\left(\begin{array}{cccc}
0 & E_{x} & E_{y} & E_{z} \\
-E_{x} & 0 & -B_{z} & B_{y} \\
-E_{y} & B_{z} & 0 & -B_{x} \\
-E_{z} & -B_{y} & B_{x} & 0
\end{array}\right),
$$

where E_{x}, E_{y}, E_{z} are the components of the electric field vector \vec{E} and B_{x}, B_{y}, B_{z} are the components of the magnetic field vector \vec{B}; as usual, we chose units in which $c=1$ [QFTGA, Ch. 5.2].

An example of a physical quantity that transforms under the symmetric tensor representation of $\mathrm{SO}^{+}(1,3)$ is the energy-momentum (density) tensor (a.k.a. stress-energy tensor) $T^{\mu \nu}$. For an electromagnetic field, we have $T^{\mu \nu}=F^{\mu \sigma} F_{\sigma}^{v}-\frac{1}{4} \eta^{\mu \nu} F^{\sigma \tau} F_{\sigma \tau}[T M, ~ V o l ~ 3, ~ C h . ~ 11.5 .3] . ~ T h i s ~ t e n s o r ~ a n d ~ i t s ~$ dual, $T_{\mu v}$, can be written as

$$
\left(T^{\mu \nu}\right)=\left(\begin{array}{cccc}
\rho & S_{x} & S_{y} & S_{z} \\
S_{x} & -\sigma_{x x} & -\sigma_{x y} & -\sigma_{x z} \\
S_{y} & -\sigma_{x y} & -\sigma_{y y} & -\sigma_{y z} \\
S_{z} & -\sigma_{x z} & -\sigma_{y z} & -\sigma_{z z}
\end{array}\right), \quad\left(T_{\mu \nu}\right)=\left(\begin{array}{cccc}
\rho & -S_{x} & -S_{y} & -S_{z} \\
-S_{x} & -\sigma_{x x} & -\sigma_{x y} & -\sigma_{x z} \\
-S_{y} & -\sigma_{x y} & -\sigma_{y y} & -\sigma_{y z} \\
-S_{z} & -\sigma_{x z} & -\sigma_{y z} & -\sigma_{z z}
\end{array}\right),
$$

where $\rho=\frac{1}{2}\left(|\vec{E}|^{2}+|\vec{B}|^{2}\right)$ is the energy density, S_{x}, S_{y}, S_{z} are the components of the Poynting vector, $\vec{S}=\vec{E} \times \vec{B}$, quantifying the momentum density, $\sigma_{i i}$ are the normal stress components, and $\sigma_{i j}$ for $i \neq j$ are the shear stress components of the stress tensor $\sigma=\vec{E} \vec{E}^{T}+\vec{B} \vec{B}^{T}-\rho I[T M$, Vol. 3, Ch. 11.5.3].

Just like for $\operatorname{SO}(4)$, the 10 -dimensional symmetric tensor representation of $\mathrm{SO}^{+}(1,3)$ breaks up into a 9 dimensional traceless symmetric representation and a 1-dimensional (trivial) representation for the trace. Note that for $\mathrm{SO}^{+}(1,3)$, the trace is given by $Y_{\mu}^{\mu}=\eta_{\mu \nu} Y^{\mu \nu}=Y^{00}-Y^{11}-Y^{22}-Y^{33}$, not the simple diagonal sum we are used to from the orthogonal case. For the above electromagnetic energymomentum tensor, the trace $\rho+\sigma_{x x}+\sigma_{y y}+\sigma_{z z}$ evaluates to zero: $\frac{1}{2}\left(|\vec{E}|^{2}+|\vec{B}|^{2}\right)+|\vec{E}|^{2}+|\vec{B}|^{2}-$ $\frac{3}{2}\left(|\vec{E}|^{2}+|\vec{B}|^{2}\right)=0$.

Just like for SO(4), the antisymmetric tensor representation of $\mathrm{SO}^{+}(1,3)$ is equivalent to the adjoint representation, both of which are six dimensional. However, because the action on the tensor-product space, $Y^{\prime}=\Lambda Y \Lambda^{T}$, and the action on the space of generators (which are not necessarily antisymmetric), $Y^{\prime}=\Lambda Y \Lambda^{-1}$, are different for $\mathrm{SO}^{+}(1,3)$, this is not as obvious as for the orthogonal case.

Finally, just like for $\mathrm{SO}(4)$, the 6 -dimensional antisymmetric tensor representation of $\mathrm{SO}^{+}(1,3)$ breaks up into two 3 -dimensional representations, known again as the self-dual and anti-self-dual representations. This will be the subject of the next example.

In summary, the full decomposition of the tensor-product representation of $\mathrm{SO}^{+}(1,3)$ into irreducibles is $\mathbf{4} \otimes \mathbf{4}=\mathbf{9} \oplus \mathbf{3} \oplus \overline{\mathbf{3}} \oplus \mathbf{1}$. In terms of irreducible representations, $\mathrm{SO}^{+}(1,3)$ looks just like SO(4). Indeed, we will see later that the finite-dimensional representations of the two groups can be classified and labeled in the same way!

