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5.20 SO*(1,3): Self-Dual and Anti-Self-Dual Representations on 3D Vectors
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In the previous example we found two 3-dimensional representations of SO*(1,3), one acting on self-
dual and one acting on anti-self-dual tensors. It is instructive to rewrite these representations in a form
where they act on 3-component column vectors. For example, letting the matrix for rotation about the x
axis (from the previous example) act on a general self-dual matrix, Y* — AY A7, yields

0 a b c 0 a b cos 6, — csin6, bsin 6, + ccos 6,
—a 0 —ic ib |, —-a 0 —i(bsinB, + ccosf,) i(bcosb, — csinb,)
-b ic 0 —ia —(bcosB, —csinb,) i(bsinb, + ccosby) 0 —ia !
—c —ib ia 0 —(bsin@, +ccosB,) —i(bcosB, —csinb,) ia 0

which is again a self-dual matrix, as expected. Now, focusing on the three free parameters a, b, and c,
the same transformation can be written in the simpler (unpacked) form

a a 1 0 0 a a
(b) > <b cos 6, — csin 9x> = <0 cosf, —sin 0x> (b) =Ry, (b>
c bsin6, + ccos 6, 0 sinf, cos6,/ \c c
Repeating this procedure for the remaining five factors yields the overall 3x3 transformation matrix
A= Ryz(gx) ) sz(ey) "Ryy (62) * Bex (¢x) Bty(d)y) * Btz (¢2), where

1 0 0 cosf, 0 sing, cos@, —sinf, 0
Ry, = <0 cosf@, —sin 9x>, R,, = 0 0 , Ryy = <sin 6, cosé, 0>,

1
0 sinf, cosH, —sin6, 0 cos6, 0 0 1
1 0 0 cosh¢, 0 isinh¢, cosh¢, —isinh¢g, 0
By = (0 cosh¢, —isinh qu), B, = 0 1 0 , By = (i sinh¢, cosh¢, 0)-
0 isinh¢, coshg, —isinh¢, 0 coshg, 0 0 1

The rotation matrices R;; are real and thus rotate the real and imaginary parts of the complex 3D vector
independently, whereas the boost matrices B;; are complex and mix the real and imaginary parts of the
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vector together. In the previous example we saw that the complex electromagnetic field E+iB
transforms under the self-dual representation. Now, we see that rotations act on Eand B
independently, whereas boosts mix EandB together, which makes perfect physical sense!

We can simplify the expression for the overall transformation by rearranging the factors like A =

Ry, (0x)Bix (Px) * Ryx(0y) By (dy) * Ryy (6,) B, (¢,) and using the identities sin(i¢p) = i sinh(¢) and
cos(i¢) = cosh(¢) to combine adjacent matrices (see the upper branch of the diagram):

1 0 0 cos(0y +igy) 0 sin(8y +idy)\ scos(8, +ip,) —sin(8, +ip,) 0
A= (0 cos(Oy +iy) —sin(fy + i¢x)> 0 1 0 (sin(@z +ip,) cos(8, +ig,) o>.
0 sin(0, +i¢p,) cos(Oy + ichy) - sin(Hy + i¢y) 0 cos(Hy + i¢y) 0 0 1

(Although this matrix differs from the original one, it is the same representation parametrized in a
different way.) Amazingly, this simplified transformation is just 3D rotation with complex angles! The
imaginary parts of the complex angles are the rapidities. The matrix A is a complex matrix that satisfies
AT = A~1 and det A = 1, that is, it is complex orthogonal. In other words, this representation of SO*(1,3)
is just the complexification (= analytic continuation) of the defining representation of SO(3)!

Next, let’s unpack the generators. In fact, we already did this for U, in the previous example:

a —ib 0 —i 0\ ,a a
<b> - < ia ) = <i 0 0><b> = Uz(b>.
c 0 0 0 0/ c
Repeating this procedure for the remaining five basis generators, we find that the T}, equal the basis
generators of the defining representation of so(3) and the U, equal iT,. Thus, a general generator w is a
complex antisymmetric matrix: w” = —w. In other words, this representation of so(1,3) is the
complexification of the defining representation of so(3). This fact can be expressed as so(1,3) = so(3)¢.

It is rather magical how the concepts of relativistic boosts and time arise from the analytic continuation
of 3D space rotations!

Applying the above unpacking procedure to the anti-self-dual representation yields the 3x3
transformation matrix A shown in the lower branch of the diagram, which now depends on the
parameter combination 8, — i¢,, instead of 8, + i¢y. In fact, the anti-self-dual representation is the
complex conjugate of the self-dual representation: A = A*. Similarly, the basis generators of the anti-
self-dual representation are T, = Ty and U, = —iT} and thus @ = w". Like for SO(4), the self-dual and
anti-self-dual representations of SO*(1,3) are inequivalent, that is, they are not related by a similarity
transformation. (Since a similarity transformation cannot change the eigenvalues of a matrix, it is, in
general, not possible to map all the complex eigenvalues to their complex conjugate [QTGR, Ch. 41.1].)

Comparing the generators of the self-dual and anti-self-dual representations of SO*(1,3), we see that the
generators of rotation are the same, T}, = T}, while the generators of boost have opposite signs, U}, =
—Uy. This is the tell-tale sign of parity inversion! Here we have an example of two inequivalent
representations that are related by parity inversion. If the self-dual representation is considered left-
handed, then the anti-self-dual representation is right-handed. In contrast, the defining representation
of SO*(1,3) and its parity-inverted version were equivalent, as we saw earlier.
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