5.20 $\mathrm{SO}^{+}(1,3)$: Self-Dual and Anti-Self-Dual Representations on 3D Vectors

In the previous example we found two 3-dimensional representations of $\mathrm{SO}^{+}(1,3)$, one acting on selfdual and one acting on anti-self-dual tensors. It is instructive to rewrite these representations in a form where they act on 3-component column vectors. For example, letting the matrix for rotation about the x axis (from the previous example) act on a general self-dual matrix, $Y^{+} \rightarrow \Lambda Y^{+} \Lambda^{T}$, yields

$$
\left(\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & -i c & i b \\
-b & i c & 0 & -i a \\
-c & -i b & i a & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
0 & b \cos \theta_{x}-c \sin \theta_{x} & b \sin \theta_{x}+c \cos \theta_{x} \\
-a & -i\left(b \sin \theta_{x}+c \cos \theta_{x}\right) & i\left(b \cos \theta_{x}-c \sin \theta_{x}\right) \\
-\left(b \cos \theta_{x}-c \sin \theta_{x}\right) & i\left(b \sin \theta_{x}+c \cos \theta_{x}\right) & 0 & -i a \\
-\left(b \sin \theta_{x}+c \cos \theta_{x}\right) & -i\left(b \cos \theta_{x}-c \sin \theta_{x}\right) & i a & 0
\end{array}\right),
$$

which is again a self-dual matrix, as expected. Now, focusing on the three free parameters a, b, and c, the same transformation can be written in the simpler (unpacked) form

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \rightarrow\left(\begin{array}{c}
a \\
b \cos \theta_{x}-c \sin \theta_{x} \\
b \sin \theta_{x}+c \cos \theta_{x}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{x} & -\sin \theta_{x} \\
0 & \sin \theta_{x} & \cos \theta_{x}
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=R_{y z}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Repeating this procedure for the remaining five factors yields the overall 3×3 transformation matrix $\Lambda^{\prime}=R_{y z}\left(\theta_{x}\right) \cdot R_{z x}\left(\theta_{y}\right) \cdot R_{x y}\left(\theta_{z}\right) \cdot B_{t x}\left(\phi_{x}\right) \cdot B_{t y}\left(\phi_{y}\right) \cdot B_{t z}\left(\phi_{z}\right)$, where

$$
\begin{gathered}
R_{y z}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{x} & -\sin \theta_{x} \\
0 & \sin \theta_{x} & \cos \theta_{x}
\end{array}\right), R_{z x}=\left(\begin{array}{ccc}
\cos \theta_{y} & 0 & \sin \theta_{y} \\
0 & 1 & 0 \\
-\sin \theta_{y} & 0 & \cos \theta_{y}
\end{array}\right), R_{x y}=\left(\begin{array}{ccc}
\cos \theta_{z} & -\sin \theta_{z} & 0 \\
\sin \theta_{z} & \cos \theta_{z} & 0 \\
0 & 0 & 1
\end{array}\right), \\
B_{t x}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh \phi_{x} & -i \sinh \phi_{x} \\
0 & i \sinh \phi_{x} & \cosh \phi_{x}
\end{array}\right), B_{t y}=\left(\begin{array}{ccc}
\cosh \phi_{y} & 0 & i \sinh \phi_{y} \\
0 & 1 & 0 \\
-i \sinh \phi_{y} & 0 & \cosh \phi_{y}
\end{array}\right), B_{t z}=\left(\begin{array}{ccc}
\cosh \phi_{z} & -i \sinh \phi_{z} & 0 \\
i \sinh \phi_{z} & \cosh \phi_{z} & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

The rotation matrices $R_{i j}$ are real and thus rotate the real and imaginary parts of the complex 3D vector independently, whereas the boost matrices $B_{t i}$ are complex and mix the real and imaginary parts of the
vector together. In the previous example we saw that the complex electromagnetic field $\vec{E}+i \vec{B}$ transforms under the self-dual representation. Now, we see that rotations act on \vec{E} and \vec{B} independently, whereas boosts mix \vec{E} and \vec{B} together, which makes perfect physical sense!

We can simplify the expression for the overall transformation by rearranging the factors like $\Lambda=$ $R_{y z}\left(\theta_{x}\right) B_{t x}\left(\phi_{x}\right) \cdot R_{z x}\left(\theta_{y}\right) B_{t y}\left(\phi_{y}\right) \cdot R_{x y}\left(\theta_{z}\right) B_{t z}\left(\phi_{z}\right)$ and using the identities $\sin (i \phi)=i \sinh (\phi)$ and $\cos (i \phi)=\cosh (\phi)$ to combine adjacent matrices (see the upper branch of the diagram):

$$
\Lambda=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\theta_{x}+i \phi_{x}\right) & -\sin \left(\theta_{x}+i \phi_{x}\right) \\
0 & \sin \left(\theta_{x}+i \phi_{x}\right) & \cos \left(\theta_{x}+i \phi_{x}\right)
\end{array}\right)\left(\begin{array}{ccc}
\cos \left(\theta_{y}+i \phi_{y}\right) & 0 & \sin \left(\theta_{y}+i \phi_{y}\right) \\
0 & 1 & 0 \\
-\sin \left(\theta_{y}+i \phi_{y}\right) & 0 & \cos \left(\theta_{y}+i \phi_{y}\right)
\end{array}\right)\left(\begin{array}{ccc}
\cos \left(\theta_{z}+i \phi_{z}\right) & -\sin \left(\theta_{z}+i \phi_{z}\right) & 0 \\
\sin \left(\theta_{z}+i \phi_{z}\right) & \cos \left(\theta_{z}+i \phi_{z}\right) & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

(Although this matrix differs from the original one, it is the same representation parametrized in a different way.) Amazingly, this simplified transformation is just 3D rotation with complex angles! The imaginary parts of the complex angles are the rapidities. The matrix Λ is a complex matrix that satisfies $\Lambda^{T}=\Lambda^{-1}$ and $\operatorname{det} \Lambda=1$, that is, it is complex orthogonal. In other words, this representation of $\mathrm{SO}^{+}(1,3)$ is just the complexification (= analytic continuation) of the defining representation of $\mathrm{SO}(3)$)

Next, let's unpack the generators. In fact, we already did this for U_{z} in the previous example:

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \rightarrow\left(\begin{array}{c}
-i b \\
i a \\
0
\end{array}\right)=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=U_{z}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) .
$$

Repeating this procedure for the remaining five basis generators, we find that the T_{k} equal the basis generators of the defining representation of so(3) and the U_{k} equal $i T_{k}$. Thus, a general generator ω is a complex antisymmetric matrix: $\omega^{T}=-\omega$. In other words, this representation of so $(1,3)$ is the complexification of the defining representation of so(3). This fact can be expressed as so(1,3) $=\operatorname{so}(3)_{\mathbb{C}}$. It is rather magical how the concepts of relativistic boosts and time arise from the analytic continuation of 3D space rotations!

Applying the above unpacking procedure to the anti-self-dual representation yields the 3×3 transformation matrix $\widetilde{\Lambda}$ shown in the lower branch of the diagram, which now depends on the parameter combination $\theta_{k}-i \phi_{k}$ instead of $\theta_{k}+i \phi_{k}$. In fact, the anti-self-dual representation is the complex conjugate of the self-dual representation: $\widetilde{\Lambda}=\Lambda^{*}$. Similarly, the basis generators of the anti-self-dual representation are $\widetilde{T}_{k}=T_{k}$ and $\widetilde{U}_{k}=-i T_{k}$ and thus $\widetilde{\omega}=\omega^{*}$. Like for SO(4), the self-dual and anti-self-dual representations of $\mathrm{SO}^{+}(1,3)$ are inequivalent, that is, they are not related by a similarity transformation. (Since a similarity transformation cannot change the eigenvalues of a matrix, it is, in general, not possible to map all the complex eigenvalues to their complex conjugate [QTGR, Ch. 41.1].)

Comparing the generators of the self-dual and anti-self-dual representations of $\mathrm{SO}^{+}(1,3)$, we see that the generators of rotation are the same, $\widetilde{T}_{k}=T_{k}$, while the generators of boost have opposite signs, $\widetilde{U}_{k}=$ $-U_{k}$. This is the tell-tale sign of parity inversion! Here we have an example of two inequivalent representations that are related by parity inversion. If the self-dual representation is considered lefthanded, then the anti-self-dual representation is right-handed. In contrast, the defining representation of $\mathrm{SO}^{+}(1,3)$ and its parity-inverted version were equivalent, as we saw earlier.

