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5.19 SO+(1,3): Self-Dual and Anti-Self-Dual Tensor Representations 

Before we can construct the self-dual and anti-self-dual tensor representations of SO+(1,3), we need to 

know how to calculate the Hodge dual in Minkowski space. Given the antisymmetric rank-2 tensor ���, 

the Hodge dual in Minkowski space is the antisymmetric rank-2 tensor ���� = �		�����
��
����� [RtR, 

Ch. 19.2; GFKG, Ch. I.5, p. 91]. We can think of this map as a two-step process: first, we apply the 

formula for the Euclidean case, �		��
�����; then, we use the metric tensor to pull the lower indices back 

up. As usual, letting � → � takes us back to the Euclidean case. 

Evaluating ���� = �		�����
��
����� for the general antisymmetric 4×4 matrix shown on the left-hand 

side results in the dual matrix shown to the right-hand side: 

� = � 0 � � �−� 0 � �−� −� 0 �−� −� −� 0� 		→ 		 �� = � 0 −� � −�� 0 � −�−� −� 0 �� � −� 0 �. 
The dual matrix is again antisymmetric, but its components got moved around. If we take the Hodge 

dual for a second time, we don’t get back to the original matrix, as we did in the Euclidean case, instead 

we get minus the original matrix. Because of this sign difference, the definition of self-dual and anti-self-

dual matrices in Minkowski space is somewhat different from that in Euclidean space. Now, the self-dual 

matrix has the property that its dual is � times the original: ��� = ��� (whereas we had ��� = �� in the 

Euclidean case). Similarly, the anti-self-dual matrix has the property that its dual is −� times the original: ��� = −��� (whereas we had ��� = −�� in the Euclidean case). The reason for these differences is that 

the eigenvalues of the Hodge-star operator are now ±�, whereas they were ±1 for the Euclidean case 

[GFKG Ch. I.5, p. 97]. As usual, the Minkowski metric makes everything a little bit messier! 
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Given any antisymmetric matrix �, we can decompose it like � = �� + ��, where �� = �	(� + ��/�) is 

self-dual and �� = �	(� − ��/�) is anti-self-dual. To confirm these properties, we calculating the Hodge 

duals ��� = �	(�� − �/�) = �	�	(� + ��/�) = ��� and ��� = �	(�� + �/�) = −�	�	(� − ��/�) = −���. Using 

the component names introduced above, we find 

�� = 12�
0 � + �� � − �� � + ��−� − �� 0 � − �� � + ��−� + �� −� + �� 0 � − ��−� − �� −� − �� −� + �� 0 �,					�� = 12�

0 � − �� � + �� � − ��−� + �� 0 � + �� � − ��−� − �� −� − �� 0 � + ��−� + �� −� + �� −� − �� 0 �. 
The matrices are now complex, but again, each one depends on only three parameters: 

�� = � 0 R S T−R 0 −�T �S−S �T 0 −�R−T −�S �R 0 � ,					�� = � 0 R∗ S∗ T∗−R∗ 0 �T∗ −�S∗−S∗ −�T∗ 0 �R∗−T∗ �S∗ −�R∗ 0 �. 
The diagram shows the self-dual and anti-self-dual representations of SO+(1,3), which are both three 

dimensional. In the upper branch, the Lorentz transformations act on self-dual matrices (named � 

instead of �� to avoid clutter), always producing another self-dual matrix and in the lower branch they 

act on anti-self-dual matrices (named �9), always producing another anti-self-dual matrix. 

Let’s try this out by acting with the generator >0 on the general self-dual matrix ��, that is, we calculate >0�� + ��>0': 

�0 0 0 10 0 0 00 0 0 01 0 0 0� ∙ � 0 R S T−R 0 −�T �S−S �T 0 −�R−T −�S �R 0 � + � 0 R S T−R 0 −�T �S−S �T 0 −�R−T −�S �R 0 � ∙ �0 0 0 10 0 0 00 0 0 01 0 0 0� = � 0 −�S �R 0�S 0 0 −R−�R 0 0 −S0 R S 0 �. 
Indeed, the result is again a self-dual matrix: the three independent parameters (R, S, T) in the self-dual 

matrix get mapped to (−�S, �R, 0). Repeating this procedure for the remaining five generators confirms 

that the �� do furnish a separate representation. The same is true for the anti-self-dual matrices ��. 

Taking the Hodge dual of the electromagnetic field-strength tensor, [��, introduced earlier, exchanges 

the electric and magnetic fields and flips the sign of one of them, \]̂ → −_]̂  and _]̂ → \]̂ : 

([��) =
`
ab
0 −\. −\/ −\0\. 0 −_0 _/\/ _0 0 −_.\0 −_/ _. 0 c

de 			→ 		 ([���) =
`
ab

0 _. _/ _0−_. 0 −\0 \/−_/ \0 0 −\.−_0 −\/ \. 0 c
de 

The self-dual and anti-self-dual field tensors, [� = �	([ + [�/�) and [� = �	([ − [�/�), evaluate to 

[� = 12 àb
0 −\. − �_. −\/ − �_/ −\0 − �_0\. + �_. 0 −_0 + �\0 _/ − �\/\/ + �_/ _0 − �\0 0 −_. + �\.\0 + �_0 −_/ + �\/ _. − �\. 0 cd

e , 				[� = 12 àb
0 −\. + �_. −\/ + �_/ −\0 + �_0\. − �_. 0 −_0 − �\0 _/ + �\/\/ − �_/ _0 + �\0 0 −_. − �\.\0 − �_0 −_/ − �\/ _. + �\. 0 cd

e. 
Thus, the complex fields \]̂ + �_]̂  and \]̂ − �_]̂  transform under the self-dual and anti-self-dual 

representations of the Lorentz group, respectively!  


