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5.17 SO+(1,3): Application to Vector-Field Dynamics; Proca and Maxwell Lagrangians 

How does a free vector field evolve in time? As we discussed for the scalar field, to respect the laws of 

special relativity, the associated action must remain invariant under Lorentz transformations. In other 

words, whereas the vector field furnishes an infinite-dimensional representation of SO+(1,3), the action 

functional must furnish the trivial representation of SO+(1,3). The upper branch of the diagram shows 

again the vector-field representation of SO+(1,3) and the lower branch shows the trivial representation 

acting on the Lagrangian density, which is a real function of the field, ������, and its derivatives, �������. 

What candidate terms for the Lagrangian density can we construct from the vector field and its 

derivatives? Like for the scalar field, we consider only terms with first-order derivatives and field 

products up to second order [PfS, Ch. 4.2]. 

From the vector field itself, we can construct the square magnitude using the Minkowski metric, which is 

invariant and satisfies the above constraints. This invariant is ��	�	���������� = ������������, where we 

used tensor-index notation [PfS, Ch. 6.4]. 

Taking the derivatives of the vector field, ���	����, and contracting the indices of the result yields the 

divergence of the vector field, ��������. This is an invariant that satisfies our constraints, but it turns out 

that the action based on this invariant has no effect on the equations of motion and therefore can be 

ignored [PfS, Ch. 6.4]. Taking the derivatives of the vector field without contracting the indices yields the 

tensor field ���	����. By multiplying this field with its index-raised/lowered cousin, ��������, and 

contracting two pairs of indices we can construct invariants. In fact, there are two ways to do the 

contractions, namely ���	���	 and �	�����	, both of which are valid candidate terms for the 

Lagrangian density [PfS, Ch. 6.4]. 
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Linearly combining these candidate terms yields the general Lagrangian density for a 4-vector field 

transforming under the trivial representation of SO+(1,3) and satisfying our additional constraints: 

A���	�������	���� = B�	���������	���� = C������������, where A, B and C are real constants. 

In physics, we are not so much interested in general 4-vector fields than in gauge fields. Gauge fields are 

special 4-vector fields that define how to “parallel transport” the values of other fields. In other words, 

they are connections that appear in covariant derivatives. We will discuss these concepts in detail when 

we come to gauge theory. As we will see, for ������ to be a U(1) gauge field, the Lagrangian density must 

remain invariant under the transformation �� ���� = ������ = ��D����, where D���� is an arbitrary 

smooth function. It turns out that this additional symmetry constraint forces B = +A [PfS, Ch. 6.4, Ch. 

7.1.2]. It is conventional to call C/A = +F� and choose A = +1/2. After these substitutions, we arrive 

at the (real) Proca Lagrangian density: 

ℒ = −
1
2
H���	�������	���� − �	���������	���� − F�������������I. 

The first two terms are often rewritten as a product, leading to the following form of the (real) Proca 

Lagrangian density [QFTGA, Ch. 13.2]: 

ℒ = −
1
4
H���	���� − �	������I����	���� − �	������� +

1
2
F�������������. 

The product of the two square-bracket expressions is often abbreviated as L�	L�	. Finally, if we set F =
0, another consequence of the above-mentioned gauge-symmetry constraint, we arrive at the free 

Maxwell Lagrangian density (which describes a proper U(1) gauge field): 

ℒ = −
1
4
H���	���� − �	������I����	���� − �	�������. 

For the equations of motion that follow from these Lagrangian densities as well as the solutions of those 

equations, see the Appendix “Decoding the Proca and Free Maxwell Equations”. 

 

  


