### 5.11 $\mathrm{SO}^{+}(1,3)$ : The Group of Proper Orthochronous Lorentz Transformations



Moving on to space-time, our representation now acts on the 4-vector $x=\left(x_{0}, x_{1}, x_{2}, x_{3}\right)^{T}=$ $(t, x, y, z)^{T}$, which describes a space-time event or, when referring to the difference of two events, a space-time interval. For clarity, we will sometimes put a harpoon on top of 4-vectors: $\vec{x}=(t, x, y, z)^{T}$ (this is not standard notation). Whereas the invariant distance measure for 4D Euclidean space was given by $d^{2}=w^{2}+x^{2}+y^{2}+z^{2}$, for space-time according to the theory of special relativity ( $=$ Minkowski space) it is given by $\tau^{2}=t^{2}-x^{2}-y^{2}-z^{2}$, where $\tau$ is known as the proper time. (To keep our equations simple, we use units in which the speed of light is one, $c=1$.) Defining the Minkowski metric $\eta=\operatorname{diag}(+1,-1,-1,-1)$, we can write the (squared) proper time as

$$
\tau^{2}=x^{T} \eta x=\left(\begin{array}{llll}
t & x & y & z
\end{array}\right)\left(\begin{array}{cccc}
+1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
t \\
x \\
y \\
z
\end{array}\right)=t^{2}-x^{2}-y^{2}-z^{2} .
$$

In contrast, the Euclidean distance was given by $d^{2}=x^{T} x=x^{T} I x$, where $I=\operatorname{diag}(1,1,1,1)$ is the metric. See the Appendix "Euclid, Galileo, Einstein: Distance in Space and Time" for a comparison.

What transformations $\Lambda$ leave the proper time invariant? The condition $x^{\prime T} \eta x^{\prime}=x^{T} \eta x$ can be expanded to $(\Lambda x)^{T} \eta(\Lambda x)=x^{T} \eta x$ or, equivalently, to $x^{T} \Lambda^{T} \eta \Lambda x=x^{T} \eta x$. Hence, the defining condition for the socalled Lorentz transformations is $\Lambda^{T} \eta \Lambda=\eta$ or, equivalently, $\Lambda^{T} \eta=\eta \Lambda^{-1}$. (Note that for $\eta \rightarrow I$ and $\Lambda \rightarrow$ $R$, we recover the orthogonal transformations: $R^{T}=R^{-1}$.) A general Lorentz transformation can be written as the matrix product $\Lambda\left(\theta_{x}, \theta_{y}, \theta_{z}, \phi_{x}, \phi_{y}, \phi_{z}\right)=R_{y z}\left(\theta_{x}\right) \cdot R_{z x}\left(\theta_{y}\right) \cdot R_{x y}\left(\theta_{z}\right) \cdot B_{t x}\left(\phi_{x}\right)$. $B_{t y}\left(\phi_{y}\right) \cdot B_{t z}\left(\phi_{z}\right)$, where [QFTGA, Ch. 9.5]

$$
R_{y z}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \theta_{x} & -\sin \theta_{x} \\
0 & 0 & \sin \theta_{x} & \cos \theta_{x}
\end{array}\right), R_{z x}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta_{y} & 0 & \sin \theta_{y} \\
0 & 0 & 1 & 0 \\
0 & -\sin \theta_{y} & 0 & \cos \theta_{y}
\end{array}\right), R_{x y}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta_{z} & -\sin \theta_{z} & 0 \\
0 & \sin \theta_{z} & \cos \theta_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

$$
B_{t x}=\left(\begin{array}{cccc}
\cosh \phi_{x} & \sinh \phi_{x} & 0 & 0 \\
\sinh \phi_{x} & \cosh \phi_{x} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), B_{t y}=\left(\begin{array}{cccc}
\cosh \phi_{y} & 0 & \sinh \phi_{y} & 0 \\
0 & 1 & 0 & 0 \\
\sinh \phi_{y} & 0 & \cosh \phi_{y} & 0 \\
0 & 0 & 0 & 1
\end{array}\right), B_{t z}=\left(\begin{array}{cccc}
\cosh \phi_{z} & 0 & 0 & \sinh \phi_{z} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh \phi_{z} & 0 & 0 & \cosh \phi_{z}
\end{array}\right) .
$$

See the upper branch of the diagram. The first three matrices describe the familiar rotations in the $y z$, $z x$, and $x y$ planes; the second three matrices are new and represent "hyperbolic rotations" in the three space-time planes $t x, t y$, and $t z$. These "hyperbolic rotations" are referred to as boosts.

What is the physical meaning of these boosts? The history of a (point-like) object can be described by a parametrized set of events, $\vec{x}(\lambda)$, known as a world line. The boost matrix $B_{t x}\left(\phi_{x}\right)$, for example, transforms the events on a word line for an object at rest to those of an object moving along the positive $x$ axis with the constant speed $v_{x}$. The parameter $\phi_{x}$, known as the rapidity, is related to the speed like $\phi_{x}=\tanh ^{-1}\left(v_{x} / c\right)$. (In this paragraph, we do not set $c=1$ to show its effect.) Unlike an angle, the rapidity $\phi_{x}$ ranges from zero (for $v_{x}=0$ ) to infinity (for $v_{x}=c$ ) and for low speeds ( $v_{x} \ll c$ ) can be approximated as $\phi_{x} \approx v_{x} / c$. Unlike velocities, rapidities add when composing two boosts (in the same direction), just like angles add when composing two rotations (about the same axis). Rewriting $B_{t x}$ in terms of $v_{x}$ and taking the limit for low speeds, $\left(1-v_{x}^{2} / c^{2}\right)^{-1 / 2} \approx 1$ and $v_{x} / c^{2} \ll t / x$, we find

$$
B_{t x}=\left(\begin{array}{cccc}
\cosh \phi_{x} & \left(\sinh \phi_{x}\right) / c & 0 & 0 \\
\left(\sinh \phi_{x}\right) \cdot c & \cosh \phi_{x} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\frac{1}{\sqrt{1-v_{x}^{2} / c^{2}}}\left(\begin{array}{cccc}
1 & v_{x} / c^{2} & 0 & 0 \\
v_{x} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \approx\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
v_{x} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

where the last matrix describes the nonrelativistic boost $t^{\prime}=t$ and $x^{\prime}=x+v_{x} t$. See the Appendix "Time Dilation, Lorentz Contraction, and Rest Energy" for effects that occur at high speeds.

Similar to how the group $O(4)$ consisted of proper and improper (reflected) rotations, so does the group $\mathrm{O}(1,3)$ consist of proper and improper as well as orthochronous and antichronous (time-reversed) Lorentz transformations. Topologically, the group manifold has four components. In contrast, O(4) had only two components. Just like the subgroup SO(4) singled out the proper rotations, so does the subgroup $\mathrm{SO}^{+}(1,3)$ single out the proper orthochronous Lorentz transformations. To restrict to the proper transformations, which do not change the spatial handedness, we require $\operatorname{det}\left(\Lambda_{i j}\right)=1$ with $i, j=1,2,3$ and to restrict to the orthochronous transformations, which do not reverse the time direction, we require $\Lambda_{00} \geq 1$ [PfS, Ch. 3.7]. Another important topological difference to $\mathrm{SO}(4)$ is that $\mathrm{SO}^{+}(1,3)$ is noncompact. Whereas the space rotations of $\mathrm{SO}^{+}(1,3)$ are compact, the "hyperbolic spacetime rotations" go off to infinity, making the Lorentz group as a whole noncompact.

The six basis generators of the Lie algebra so(1,3) can be found by taking the derivatives $T_{i}=\partial \Lambda / \partial \theta_{i}$ and $U_{i}=\partial \Lambda / \partial \phi_{i}$ at $\theta_{i}=\phi_{i}=0$. Note that the generators of rotation, $T_{i}$, are antisymmetric, as usual, but the generators of boost, $U_{i}$, are symmetric (see the diagram). A general element of the Lie algebra can be written as $\omega=T_{i} \theta_{i}+U_{i} \phi_{i}$ (summation implied) and satisfies $\omega^{T} \eta=-\eta \omega$. In contrast to so(4), a general generator of so(1,3) is not antisymmetric (but $\eta \omega$ and $\omega \eta$ are). The commutation relations are almost the same as for so(4) except for one crucial difference: the minus sign in $\left[U_{i}, U_{j}\right]=-\varepsilon_{i j k} T_{k}$. Like for so(3), the generators of so(1,3) can be associated with observables: $T_{i}$ with the angular momentum and $U_{i}$ with the center of mass motion [RtR, Ch. 18.6-7; PfS, Ch. 4.6-7].

Like any group, the Lorentz group has a trivial representation, which is shown in the lower branch of the diagram. For example, the proper time $\tau$ transform under the trivial representation (i.e., it is invariant).

