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5.23 SL(2,ℂ): Left- and Right-Chiral Weyl-Spinor Representations; (½, 0) and (0, ½) 

Earlier, we discussed how to obtain the parity-inverted representation by changing the sign of the three 

boost generators ��. Then, we saw that for the defining representation of SO+(1,3) parity inversion 

yields a representation that is equivalent (= related by a similarity transformation) to the original one. 

What happens in the case of SL(2,ℂ)? As we will see in a moment, parity inversion yields a new, 

inequivalent representation! This means that SL(2,ℂ) has two 2-dimensional representations. The one 

we discussed in the previous example is known as the left-chiral (or left-handed) spinor representation 

(shown again in the upper branch of the diagram; �� = −���/2, �� = −��/2) and the new one, which 

we’ll discuss in the following, is known as the right-chiral (or right-handed) spinor representation (lower 

branch of the diagram; �� = −���/2, �� = +��/2). These names allude to the handedness of the 

corresponding 4-vector representations of SO+(1,3). The first representation, acting on left-chiral 

spinors, �, is labeled (½, 0) and the second one, acting on right-chiral spinors, ��, is labeled (0, ½). 

Collectively, the two types of spinors are known as Weyl spinors. 

How are the two representations related? A general generator of the left-chiral spinor representation 

can be written as � = �� �
� −��, where �, �, and � are (arbitrary) complex numbers. Flipping the sign 

of the basis generators ��, we find the corresponding generator of the right-chiral spinor representation 

�� = −��∗ �∗
�∗ −�∗�, where the star indicates complex conjugation. These two generators are related by 

�� = −�
�
. It turns out that this can also be written as �� = ����∗�: 

�� = ����∗� = �0 −1
1 0 ���

∗ �∗
�∗ −�∗� � 0 1

−1 0� = −��∗ �∗
�∗ −�∗�, 

where � is the 2-dimensional (rank-2) Levi-Civita symbol ���. This is not a similarity transformation and 

hence the two representations are inequivalent. But the right-chiral representation is equivalent to the 

complex-conjugate representation of the left-chiral representation. Exponentiating the generators, we 
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find that the corresponding group transformations are related by &� � &���
 or, equivalently, by &� �

���&∗ �. The reverse relationship is given by � � ���� or � � �����∗ � and & � &����
 or & �

���&�∗ �, where we used that ��� � ��. 

How are the left- and right-chiral spinors related? We know that the generator � acts on a left-chiral 

spinor like �, � �� and that we can relate it to its right-chiral cousin by � � �����∗ �. Plugging the 

second equation into the first one, we find that �, � �����∗ ��. Left-multiplying this equation by � and 

complex conjugating it reveals ��,∗ � ����∗, which means that ��∗ transforms just like ��! Similarly, 

we can show that ���∗  transforms just like �. In summary, the two types of spinors are related by 

complex conjugation and multiplication by �. (The van der Waerden notation keeps track of these 

operations with dotted and undotted as well as upstairs and downstairs indices [PfS, Ch 3.7.7].) 

From the two types of spinors, we can construct several invariants, which will become important later. 

For example, we can take the Hermitian product of a left- and right-chiral spinor or the other way 

around: D
��� or D�

��. To demonstrate that D
,���, = D

���, we expand the left-hand side to 

(&D)�&��� and transpose it to D
�&

�&���, which equals D
��� (= the right-hand side) because 

&
�&� = G. Moreover, using the facts that ��∗  transforms like �� and ���∗  transforms like �, we can 

construct two more invariants from spinor pairs of the same chirality, namely DH�� and D�H���. 

Because the matrix � in these spinor expressions plays a similar role as the metric tensor I in 4-vector 

expressions, it is known as the spinor metric. Note that if we restrict SL(2,ℂ) to the subgroup SU(2) by 

setting +( = +) = +* = 0, the distinction between the two 2-dimensional representations disappears, 

& = &�, � = ��, and � = �� = �, and the above four invariants reduce to D�� and DH��, which 

we already know from SU(2). 

Let’s take a spin-½ particle in the horizontal state 1/√2	(1, 1)H and boost it in the positive � direction 

close to the speed of light. If the particle is left chiral, we use the transformation &(+* → ∞) and get 

(after normalization) the state (0, 1)H, which represents “spin down” along the � axis. The spin has 

become antiparallel to the direction of boost, in agreement with our earlier example. Next, if the 

particle is right chiral, we use the transformation &�(+* → ∞) and get (after normalization) the state 

(1, 0)H, which represents “spin up”. Now, the spin becomes parallel to the direction of boost. 

Helicity is defined as the spin component in the direction of motion (= the projection of the spin vector 

on a unit vector in the direction of motion). Chirality is defined by how the particle’s state transforms 

under a boost: according to & or &�. In the above example the particle with left chirality acquired a 

helicity of −1/2 and the particle with right chirality acquired a helicity of +1/2. 

According to the Dirac equation only massless particles have a definite and time-independent chirality, 

as we will see later. Moreover, massless particles always move at the speed of light. Thus, massless left-

chiral particles always have negative helicity and massless right-chiral particles always have positive 

helicity. Surprisingly, neutrinos (which are approximately massless) come only in a the left-chiral form, 

no right-chiral neutrino has ever been observed! Even more surprisingly, left-chiral fermions (neutrinos, 

electrons, etc.) carry a charge (weak isospin charge) whereas right-chiral ones do not!!  


