5.27 SL(2, $\mathbb{C}):$ Spinor-Field Representation

After discussing scalar and vector fields, we now turn to spinor fields. We consider the spinor field $\psi(\vec{x})$ where $\psi=\left(\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}\right)^{T}$ is a Dirac spinor (either in the chiral or mass basis) that is a function of space-time $\vec{x}=(t, x, y, z)^{T}$. An example of such a spinor field is the electron/positron field in quantumfield theory. The upper branch of the diagram shows a (complex) scalar-field representation of SL(2, C) for reference and the lower branch shows the spinor-field representation, which we will discuss now.

How does a Dirac-spinor field transform under SL(2,C)? Having discussed the 4-vector field earlier, we know how to proceed. A Dirac spinor by itself transforms like $\psi^{\prime}=\bar{L} \psi$, where \bar{L} is the Dirac-spinor representation of $S L(2, \mathbb{C})$, either in the chiral or mass basis, that we discussed in the previous examples. A scalar field transforms like $\Phi^{\prime}(\vec{x})=\Phi\left(\Lambda^{-1} \vec{x}\right)$, where Λ is the defining representation of $\mathrm{SO}^{+}(1,3)$, which is also a representation of $\operatorname{SL}(2, \mathbb{C})$. Combining the two parts, we conclude that a Dirac-spinor field transforms like $\psi^{\prime}(\vec{x})=\bar{L} \psi\left(\Lambda^{-1} \vec{x}\right)$. Using our informal dot notation to separate the operator from the Dirac-spinor field, $\psi(\vec{x})$, we can write $\tilde{L}=\bar{L}\left\{\cdot\left(\Lambda^{-1} \cdot\right)\right\}$, where the first dot is a placeholder for the field's name and the second dot is a placeholder for its space-time argument. This operator acts on the Dirac-spinor field like $\tilde{L} \psi(\vec{x})=\bar{L} \psi\left(\Lambda^{-1} \vec{x}\right)$ (see the lower branch of the diagram).

What is the corresponding Lie-algebra representation? From our earlier discussion of the 4-vector field, we know that the generators will have two parts: a part for the field's internal structure and a part for the field's space-time structure. The space-time structure is the same as before, but the field's internal structure is now a Dirac spinor instead of a four vector. The six basis generators thus are $\widetilde{T}_{i}=\bar{T}_{i}+$ $\frac{1}{2} \varepsilon_{i j k}[\vec{x} \wedge \eta \vec{\nabla}]_{j k} I$ (summation over j and k implied) and $\widetilde{U}_{i}=\bar{U}_{i}+[\vec{x} \wedge \eta \vec{\nabla}]_{0 i} I$, where \bar{T}_{i} and \bar{U}_{i} are the 4×4 generators acting on Dirac spinors that we discussed earlier (either in the chiral or mass basis) and I is the 4×4 identity matrix, which multiplies the differential operators of the scalar-field representation to make them compatible with the matrices of the Dirac-spinor representation (see the lower branch of the diagram).

For example, the generator \tilde{T}_{x} for a rotation about the x axis evaluates to

$$
\tilde{T}_{x}=\frac{1}{2}\left(\begin{array}{cccc}
0 & -i & 0 & 0 \\
-i & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & -i & 0
\end{array}\right)+\left(z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z} & -\frac{i}{2} & 0 & 0 \\
-\frac{i}{2} & z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z} & 0 & 0 \\
0 & 0 & z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z} & -\frac{i}{2} \\
0 & 0 & -\frac{i}{2} & z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}
\end{array}\right) .
$$

Similarly, the generator \widetilde{U}_{z} for a boost in the z direction (in the chiral basis) evaluates to
$\widetilde{U}_{z}=\frac{1}{2}\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right)+\left(-z \frac{\partial}{\partial t}-t \frac{\partial}{\partial z}\right)\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)=\left(\begin{array}{cccc}-\frac{1}{2}-z \frac{\partial}{\partial t}-t \frac{\partial}{\partial z} & 0 & 0 & 0 \\ 0 & \frac{1}{2}-z \frac{\partial}{\partial t}-t \frac{\partial}{\partial z} & 0 & 0 \\ 0 & 0 & \frac{1}{2}-z \frac{\partial}{\partial t}-t \frac{\partial}{\partial z} & 0 \\ 0 & 0 & 0 & -\frac{1}{2}-z \frac{\partial}{\partial t}-t \frac{\partial}{\partial z}\end{array}\right)$.
Similar to what we did for the scalar and vector fields, we can rewrite the six basis generators of the Dirac-spinor field representation as $\widetilde{T}_{i}=\bar{T}_{i}+\frac{1}{2} \varepsilon_{i j k} W^{j k} I$ and $\widetilde{U}_{i}=\bar{U}_{i}+W^{0 i} I$, where $W^{\mu \nu}=x^{\mu} \partial^{\nu}-$ $x^{v} \partial^{\mu}$. Here we used tensor-index notation for the space-time part.

How can we express a general generator $\widetilde{\omega}$ of the Dirac-spinor-field representation? Given the generator $\widehat{\omega}_{\mu \nu}$ of the 4-vector representation, we know that we can express the corresponding generator of the Dirac-spinor representation as $\frac{1}{4} \widehat{\omega}_{\mu \nu} \gamma^{\mu} \gamma^{\nu}$ and that of the scalar-field representation as $\frac{1}{2} \widehat{\omega}_{\mu \nu} W^{\mu \nu}$. Thus, the general generator of the Dirac-spinor-field representation is $\widetilde{\omega}=\frac{1}{4} \widehat{\omega}_{\mu \nu} \gamma^{\mu} \gamma^{\nu}+\frac{1}{2} \widehat{\omega}_{\mu \nu} W^{\mu \nu}$ I. Putting this generator into the exponential map, yields the associated Dirac-spinor-field transformation $\tilde{L}=$ $\exp \left(\widehat{\omega}_{\mu \nu}\left[\frac{1}{4} \gamma^{\mu} \gamma^{\nu}+\frac{1}{2} W^{\mu \nu} I\right]\right)$.

