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5.26 SL(2,C): Four-Vector Representation; (%, %) = (%5, 0) @ (0, %)
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WEe’'ll now turn to the important (%, %) representation of SL(2,C). To construct it, we take the tensor
product (%, 0) ® (0, %), which acts on rank-2 spinors as shown in the lower branch of the diagram. Given
our experience with the (%, ) representation of Spin(4), we may guess (correctly) that this
representation is equivalent to the (complexified) defining representation of SO*(1,3). The upper branch
of the diagram shows again the defining representation of SO*(1,3) for reference.

How does the (%, %4) representation act on the rank-2 spinor Z? Analogous to our discussion of Spin(4),
we use the fact that Z transforms like the outer product y, %, with y; = L, x, and Y, = Lgg, thus

7' = L, ZL%. Using the relationship Lr = £ 1L}  from three examples ago, this transformation becomes
7' = LLZs_lLIS. Now, it turns out that to get a direct correspondence between the rank-2 spinor and
the 4-vector representations, we need to pick the similar transformation z' = LZLY, where L is the
SL(2,C) representation that we formerly called L (see the lower branch of the diagram). (If we choose
L = L; instead, we get the parity-inverted 4-vector representation.)

How do the generators of this representation act on Z? Taking the derivative of the transformation z' =
LZLT with respect to the parameters of L (using the product rule) and evaluating the result at the
identity, we find 2’ = @Z + Z&T, where @ is the generator of L (see the lower branch of the diagram;
T; = —io;/2 and U; = 0;/2 like in the right-chiral Weyl representation).

Analogous to our discussion of Spin(4), we can view the representation space C?>*? as a 4-dimensional
vector space over the complex numbers or as an 8-dimensional vector space over the reals. In the latter
case, we have an 8-dimensional representation that is reducible into two 4-dimensional ones. Why? A
general complex 2x2 matrix can be decomposed into a Hermitian and an anti-Hermitian part like
2+z‘=(t+.z x_ly>+i(_t+.z_ xflf’),
x+iy t—z XxX+iy t—z
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where t, x,y,2,t,X%,y, and Z are 8 real numbers. The Hermitian matrix Z (first part) satisfies Z = 71 and
lives in the 4-dimensional subspace spanned by the basis I, oy, 0, 0,. The transformation 7' =LaLY
always maps Hermitian matrices to Hermitian ones [PfS, Ch. 3.7.8]. Similarly, the anti-Hermitian matrix Z
(second part) satisfies Z = —zT and lives in the 4-dimensional subspace spanned by the basis il, ic,,
igy, ig,. The transformation Z' = LZzL' always maps anti-Hermitian matrices to anti-Hermitian ones. The
lower branch of the diagram shows the 4-dimensional representation on Hermitian matrices.

We suspected that the (%, }2) representation of SL(2,C) acting on the 4-dimensional Hermitian (or anti-
Hermitian) subspace is equivalent to the defining representation of SO*(1,3). Let’s check that! Picking a
boost in the positive z direction, the transformation z' = LzLY is

( t+z x'— iy’) _ <e¢z/2 0 ) ( t+z x-— iy) (e¢z/z 0 )
xX+iy t—-z) \ 0 e%/2)]\x+iy t—z 0 e %/2)
Multiplying out the matrices and solving for (t',x’,y’,z’)T, we find that the vector transforms like

r
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which is exactly the boost matrix B;,(¢,) of the defining representation of SO*(1,3)! Note how the
exponentials in the SL(2,C) matrix combine into the hyperbolic sines and cosines of the SO*(1,3) matrix.
Repeating this exercise for the other boosts and rotations reveals that the two representations are, in
fact, equivalent.

Why does this work? The SL(2,C) matrices L and L have unit determinants by definition: det L =

det LT = 1. This means that the transformation ' = LZL' preserves the determinant: detZ' = det Z.

2 — y2 — 72, the Minkowski space-time distance (= proper
time). This is exactly the invariance that defines the transformations in SO*(1,3)!

But what is the determinant of Z? It is t? — x

Just to be sure, let’s also check the action of an algebra element. Picking the generator for a boost in the
positive z direction, the map ' = @Z + Z&' expands to

(t'—l—z’ x'_iy'>:1(1 0)(t+z x—iy)+(t+z x—iy>1(1 0)
x'+iy t'-7 20 —-1/\x+iy t—z x+iy t—z)2\0 =1/

Solving for (t',x’,y’,2z")T recovers the basis generator U, of the defining representation of SO*(1,3):

t' 0 0 0 1\ /t
X\ _ [0 0 0 ol[x
y 710 0o o o]ly
z 1 0 0 0/ \z

In summary, we can Lorentz transform 4-vectors by doing some kind of magic trick: We “fold” the 4-
vector into a rank-2 spinor Z, act on it with the formula z' = LZLY, where L is an SL(2,C) matrix, and
then “pull” the transformed 4-vector back out. Voila!

Given the correspondence between 4-vectors and rank-2 spinors, we may wonder if a 4-vector is
equivalent to a left- and right-chiral spinors. No! Rank-2 spinors obtained by taking the outer product
Z = y, 1k always have det Z = 0 and therefore correspond to null 4-vectors, not general 4-vectors.
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