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5.26 SL(2,ℂ): Four-Vector Representation; (½, ½) = (½, 0) ⨂ (0, ½) 

We’ll now turn to the important (½, ½) representation of SL(2,ℂ). To construct it, we take the tensor 

product (½, 0) ⨂ (0, ½), which acts on rank-2 spinors as shown in the lower branch of the diagram. Given 

our experience with the (½, ½) representation of Spin(4), we may guess (correctly) that this 

representation is equivalent to the (complexified) defining representation of SO+(1,3). The upper branch 

of the diagram shows again the defining representation of SO+(1,3) for reference. 

How does the (½, ½) representation act on the rank-2 spinor �̃? Analogous to our discussion of Spin(4), 

we use the fact that �̃ transforms like the outer product ����	, with ��
 = ���� and ��
 = ����, thus 

�̃′ = ���̃��	 . Using the relationship �� = �����∗ � from three examples ago, this transformation becomes 

�̃′ = ���̃�������. Now, it turns out that to get a direct correspondence between the rank-2 spinor and 

the 4-vector representations, we need to pick the similar transformation �̃′ = ��̃��, where � is the 

SL(2,ℂ) representation that we formerly called �� (see the lower branch of the diagram). (If we choose 

� = �� instead, we get the parity-inverted 4-vector representation.) 

How do the generators of this representation act on �̃? Taking the derivative of the transformation �̃′ =
��̃�� with respect to the parameters of � (using the product rule) and evaluating the result at the 

identity, we find �̃′ = ���̃ + �̃���, where �� is the generator of � (see the lower branch of the diagram; 

��� = −���/2 and ��� = ��/2 like in the right-chiral Weyl representation). 

Analogous to our discussion of Spin(4), we can view the representation space ℂ ×  as a 4-dimensional 

vector space over the complex numbers or as an 8-dimensional vector space over the reals. In the latter 

case, we have an 8-dimensional representation that is reducible into two 4-dimensional ones. Why? A 

general complex 2×2 matrix can be decomposed into a Hermitian and an anti-Hermitian part like 

�̃ + �̅ = # $ + � % − �&% + �& $ − � ' + � # $̅ + �̅ %̅ − �&(
%̅ + �&( $̅ − �̅ ', 
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where $, %, &, �, $̅, %̅, &(, and �̅ are 8 real numbers. The Hermitian matrix �̃ (first part) satisfies �̃ = �̃� and 

lives in the 4-dimensional subspace spanned by the basis T, �., �/, �0. The transformation �̃′ = ��̃�� 

always maps Hermitian matrices to Hermitian ones [PfS, Ch. 3.7.8]. Similarly, the anti-Hermitian matrix �̅ 
(second part) satisfies �̅ = −�̅� and lives in the 4-dimensional subspace spanned by the basis �T, ��., 

��/, ��0. The transformation �̅′ = ��̅�� always maps anti-Hermitian matrices to anti-Hermitian ones. The 

lower branch of the diagram shows the 4-dimensional representation on Hermitian matrices. 

We suspected that the (½, ½) representation of SL(2,ℂ) acting on the 4-dimensional Hermitian (or anti-

Hermitian) subspace is equivalent to the defining representation of SO+(1,3). Let’s check that! Picking a 

boost in the positive � direction, the transformation �̃′ = ��̃�� is 
# $′ + �′ %′ − �&′%′ + �&′ $′ − �′ ' = #:UV/ 00 :�UV/ ' # $ + � % − �&% + �& $ − � ' #:UV/ 00 :�UV/ '. 

Multiplying out the matrices and solving for W$
, %
, &
, �′X	, we find that the vector transforms like 

Y$′%′&′�′Z = 12 Y:UV + :�UV 0 0 :UV − :�UV0 2 0 00 0 2 0:UV − :�UV 0 0 :UV + :�UV
Z [$%&�\ = Ycosh 1� 0 0 sinh 1�0 1 0 00 0 1 0sinh 1� 0 0 cosh 1�

Z [$%&�\, 
which is exactly the boost matrix ]^0W10X of the defining representation of SO+(1,3)! Note how the 

exponentials in the SL(2,ℂ) matrix combine into the hyperbolic sines and cosines of the SO+(1,3) matrix. 

Repeating this exercise for the other boosts and rotations reveals that the two representations are, in 

fact, equivalent. 

Why does this work? The SL(2,ℂ) matrices � and �� have unit determinants by definition: det � =det �� = 1. This means that the transformation �̃′ = ��̃�� preserves the determinant: det �̃′ = det �̃. 

But what is the determinant of �̃? It is $ − % − & − � , the Minkowski space-time distance (= proper 

time). This is exactly the invariance that defines the transformations in SO+(1,3)! 

Just to be sure, let’s also check the action of an algebra element. Picking the generator for a boost in the 

positive � direction, the map �̃′ = ���̃ + �̃��� expands to 
# $′ + �′ %′ − �&′%′ + �&′ $′ − �′ ' = 12 _1 00 −1` # $ + � % − �&% + �& $ − � ' + # $ + � % − �&% + �& $ − � ' 12 _1 00 −1`. 

Solving for W$
, %
, &
, �′X	 recovers the basis generator �0 of the defining representation of SO+(1,3): 

Y$′%′&′�′Z = Y0 0 0 10 0 0 00 0 0 01 0 0 0Z [$%&�\. 
In summary, we can Lorentz transform 4-vectors by doing some kind of magic trick: We “fold” the 4-

vector into a rank-2 spinor �̃, act on it with the formula �̃′ = ��̃��, where � is an SL(2,ℂ) matrix, and 

then “pull” the transformed 4-vector back out. Voila! 

Given the correspondence between 4-vectors and rank-2 spinors, we may wonder if a 4-vector is 

equivalent to a left- and right-chiral spinors. No! Rank-2 spinors obtained by taking the outer product �̃ = ����	 always have det �̃ = 0 and therefore correspond to null 4-vectors, not general 4-vectors. 


