

We'll now turn to the important $(1 / 2,1 / 2)$ representation of $\operatorname{SL}(2, \mathbb{C})$. To construct it, we take the tensor product $(1 / 2,0) \otimes(0,1 / 2)$, which acts on rank-2 spinors as shown in the lower branch of the diagram. Given our experience with the ($1 / 2,1 / 2$) representation of Spin(4), we may guess (correctly) that this representation is equivalent to the (complexified) defining representation of $\mathrm{SO}^{+}(1,3)$. The upper branch of the diagram shows again the defining representation of $\mathrm{SO}^{+}(1,3)$ for reference.

How does the ($1 / 2,1 / 2$) representation act on the rank-2 spinor \tilde{z} ? Analogous to our discussion of Spin(4), we use the fact that \tilde{z} transforms like the outer product $\chi_{L} \psi_{R}^{T}$, with $\chi_{L}^{\prime}=L_{L} \chi_{L}$ and $\psi_{R}^{\prime}=L_{R} \psi_{R}$, thus $\tilde{z}^{\prime}=L_{L} \tilde{z} L_{R}^{T}$. Using the relationship $L_{R}=\varepsilon^{-1} L_{L}^{*} \varepsilon$ from three examples ago, this transformation becomes $\tilde{z}^{\prime}=L_{L} \tilde{z} \mathcal{E}^{-1} L_{L}^{\dagger} \varepsilon$. Now, it turns out that to get a direct correspondence between the rank-2 spinor and the 4 -vector representations, we need to pick the similar transformation $\tilde{z}^{\prime}=L \tilde{z} L^{\dagger}$, where L is the $\mathrm{SL}(2, \mathbb{C})$ representation that we formerly called L_{R} (see the lower branch of the diagram). (If we choose $L=L_{L}$ instead, we get the parity-inverted 4-vector representation.)

How do the generators of this representation act on \tilde{z} ? Taking the derivative of the transformation $\tilde{z}^{\prime}=$ $L \tilde{z} L^{\dagger}$ with respect to the parameters of L (using the product rule) and evaluating the result at the identity, we find $\tilde{z}^{\prime}=\widetilde{\omega} \tilde{z}+\tilde{z} \widetilde{\omega}^{\dagger}$, where $\widetilde{\omega}$ is the generator of L (see the lower branch of the diagram; $\widetilde{T}_{i}=-i \sigma_{i} / 2$ and $\widetilde{U}_{i}=\sigma_{i} / 2$ like in the right-chiral Weyl representation).

Analogous to our discussion of Spin(4), we can view the representation space $\mathbb{C}^{2 \times 2}$ as a 4 -dimensional vector space over the complex numbers or as an 8 -dimensional vector space over the reals. In the latter case, we have an 8 -dimensional representation that is reducible into two 4 -dimensional ones. Why? A general complex 2×2 matrix can be decomposed into a Hermitian and an anti-Hermitian part like

$$
\tilde{z}+\bar{z}=\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right)+i\left(\begin{array}{cc}
\bar{t}+\bar{z} & \bar{x}-i \bar{y} \\
\bar{x}+i \bar{y} & \bar{t}-\bar{z}
\end{array}\right),
$$

where $t, x, y, z, \bar{t}, \bar{x}, \bar{y}$, and \bar{z} are 8 real numbers. The Hermitian matrix \tilde{z} (first part) satisfies $\tilde{z}=\tilde{z}^{\dagger}$ and lives in the 4 -dimensional subspace spanned by the basis $I, \sigma_{x}, \sigma_{y}, \sigma_{z}$. The transformation $\tilde{z}^{\prime}=L \tilde{z} L^{\dagger}$ always maps Hermitian matrices to Hermitian ones [PfS, Ch. 3.7.8]. Similarly, the anti-Hermitian matrix \bar{z} (second part) satisfies $\bar{z}=-\bar{z}^{\dagger}$ and lives in the 4-dimensional subspace spanned by the basis $i I, i \sigma_{x}$, $i \sigma_{y}, i \sigma_{z}$. The transformation $\bar{z}^{\prime}=L \bar{z} L^{\dagger}$ always maps anti-Hermitian matrices to anti-Hermitian ones. The lower branch of the diagram shows the 4-dimensional representation on Hermitian matrices.

We suspected that the $(1 / 2,1 / 2)$ representation of $\operatorname{SL}(2, \mathbb{C})$ acting on the 4 -dimensional Hermitian (or antiHermitian) subspace is equivalent to the defining representation of $\mathrm{SO}^{+}(1,3)$. Let's check that! Picking a boost in the positive z direction, the transformation $\tilde{z}^{\prime}=L \tilde{z} L^{\dagger}$ is

$$
\left(\begin{array}{cc}
t^{\prime}+z^{\prime} & x^{\prime}-i y^{\prime} \\
x^{\prime}+i y^{\prime} & t^{\prime}-z^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
e^{\phi_{z} / 2} & 0 \\
0 & e^{-\phi_{z} / 2}
\end{array}\right)\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right)\left(\begin{array}{cc}
e^{\phi_{z} / 2} & 0 \\
0 & e^{-\phi_{z} / 2}
\end{array}\right) .
$$

Multiplying out the matrices and solving for $\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)^{T}$, we find that the vector transforms like

$$
\left(\begin{array}{l}
t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}
e^{\phi_{z}}+e^{-\phi_{z}} & 0 & 0 & e^{\phi_{z}}-e^{-\phi_{z}} \\
0 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 \\
e^{\phi_{z}}-e^{-\phi_{z}} & 0 & 0 & e^{\phi_{z}}+e^{-\phi_{z}}
\end{array}\right)\left(\begin{array}{l}
t \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \phi_{z} & 0 & 0 & \sinh \phi_{z} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh \phi_{z} & 0 & 0 & \cosh \phi_{z}
\end{array}\right)\left(\begin{array}{l}
t \\
x \\
y \\
z
\end{array}\right),
$$

which is exactly the boost matrix $B_{t z}\left(\phi_{z}\right)$ of the defining representation of $\mathrm{SO}^{+}(1,3)$! Note how the exponentials in the $\mathrm{SL}(2, \mathbb{C})$ matrix combine into the hyperbolic sines and cosines of the $\mathrm{SO}^{+}(1,3)$ matrix. Repeating this exercise for the other boosts and rotations reveals that the two representations are, in fact, equivalent.

Why does this work? The $\operatorname{SL}(2, \mathbb{C})$ matrices L and L^{\dagger} have unit determinants by definition: $\operatorname{det} L=$ $\operatorname{det} L^{\dagger}=1$. This means that the transformation $\tilde{z}^{\prime}=L \tilde{z} L^{\dagger}$ preserves the determinant: $\operatorname{det} \tilde{z}^{\prime}=\operatorname{det} \tilde{z}$. But what is the determinant of \tilde{z} ? It is $t^{2}-x^{2}-y^{2}-z^{2}$, the Minkowski space-time distance (= proper time). This is exactly the invariance that defines the transformations in $\mathrm{SO}^{+}(1,3)$!

Just to be sure, let's also check the action of an algebra element. Picking the generator for a boost in the positive z direction, the map $\tilde{z}^{\prime}=\widetilde{\omega} \tilde{z}+\tilde{z} \widetilde{\omega}^{\dagger}$ expands to

$$
\left(\begin{array}{cc}
t^{\prime}+z^{\prime} & x^{\prime}-i y^{\prime} \\
x^{\prime}+i y^{\prime} & t^{\prime}-z^{\prime}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right)+\left(\begin{array}{cc}
t+z & x-i y \\
x+i y & t-z
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Solving for $\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)^{T}$ recovers the basis generator U_{z} of the defining representation of $\mathrm{SO}^{+}(1,3)$:

$$
\left(\begin{array}{c}
t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
t \\
x \\
y \\
z
\end{array}\right) .
$$

In summary, we can Lorentz transform 4-vectors by doing some kind of magic trick: We "fold" the 4vector into a rank-2 spinor \tilde{z}, act on it with the formula $\tilde{z}^{\prime}=L \tilde{z} L^{\dagger}$, where L is an $\operatorname{SL}(2, \mathbb{C})$ matrix, and then "pull" the transformed 4 -vector back out. Voila!

Given the correspondence between 4-vectors and rank-2 spinors, we may wonder if a 4-vector is equivalent to a left- and right-chiral spinors. No! Rank-2 spinors obtained by taking the outer product $\tilde{z}=\chi_{L} \psi_{R}^{T}$ always have $\operatorname{det} \tilde{z}=0$ and therefore correspond to null 4 -vectors, not general 4 -vectors.

