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5.22 SL(2,ℂ) = Spin+(1,3): The Relativistic Spin Group; Spinor Representations 

The Lie group SL(2,ℂ), or rather its defining representation, consists of the complex 2×2 matrices � with 

determinant one: ������ − ������ = 1. The S stands for special (= determinant one) and the L stands 

for linear. It acts on the complex 2-component vectors �, as shown in the diagram. It turns out that 

SL(2,ℂ) is isomorphic to Spin+(1,3), the double cover of SO+(1,3)! This is analogous to how SU(2) is 

isomorphic to Spin(3), the double cover of SO(3). SL(2,ℂ) is known as the relativistic spin group [GATP, 

Lect. 15] and its representations consist of those of the proper orthochronous Lorentz group, SO+(1,3), 

plus the crucial spinor representations, which we will study next. 

How many parameters does an SL(2,ℂ) matrix have? A general complex 2×2 matrix has four 

independent complex parameters, thus an SL(2,ℂ) matrix, which is constrained to have determinant 

one, has three. Instead of writing the matrix in terms of three complex parameters, we can also write it 

in terms of six real parameters by splitting each complex parameter into a real and imaginary part. For 

example, we can write the matrix in terms of the three complex parameters ���, ���, and ��� or in 

terms of the six real parameters ���	 , ���	 , ���	 , ���		 , ���		 , and ���		 : 

� = ���� ������ 1 + ���������

 = ����	 + ����		 ���	 + ����		

���	 + ����		 1 + (���	 + ����		 )(���	 + ����		 )���	 + ����		 
. 
(This works only if ��� ≠ 0; but if ��� = 0, we can always find another parametrization that works.) The 

diagram shows another way to parametrize the same SL(2,ℂ) matrix. In the upper branch it is written in 

terms of the three complex parameters Θ�, Θ�, and Θ� and in the lower branch in terms of the six real 

parameters ��, ��, ��, ��, ��, and ��. We’ll see how to construct those matrices in a moment. 

The Lie algebra sl(2,ℂ) consists of the complex 2×2 matrices � with trace zero: ��� + ��� = 0. Like for 

SU(2), the determinant-one constraint of SL(2,ℂ) translates to the trace-zero constraint of sl(2,ℂ). The 
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space of all � matrices can be understood as a 3-dimensional vector space over the complex numbers or 

as a 6-dimensional vector space over the real numbers. In the first case, we have three basis generators, 

such as the matrices ��, ��, and �� shown in the upper branch of the diagram, which we combine with 

complex numbers (another possible basis is �� ± �� and ��). In the second case, we have six basis 

generators, such as the matrices ���, ���, ���, CD�, CD�, and CD� shown in the lower branch of the diagram, 

which we combine with real numbers. 

The six basis generators in the lower branch of the diagram were chosen such that the ��B = −�FB/2 are 

identical to the basis generators we had for su(2) and that the commutation relations of the whole set 

agree with those of so(1,3) (the sign of CDB = −FB/2 was chosen to agree with the left-spinor definition 

in [QFTGA Ch. 37.3].) The fact that we can reproduce the commutation relations of so(1,3) shows that 

the two Lie algebras are isomorphic: sl(2,ℂ) = so(1,3). 

The exponential map takes us from sl(2,ℂ) to SL(2,ℂ). We can do this by starting from the 3-dimensional 

complex parametrization (upper branch) or the 6-dimensional real parametrization (lower branch). In 

the latter case, a general SL(2,ℂ) transformation with angle parameters �B and rapidity parameters �B 

can be expressed as the matrix product ��(��, �� , ��, �� , �� , ��) = ����(��) ∙ ����(��) ∙ ����(��) ∙��I�(��) ∙ ��I�(��) ∙ ��I�(��) =  *�+J+ ∙  *�-J- ∙  *�.J. ∙  KD+L+ ∙  KD-L- ∙  KD.L., where 

���� = M cos ��/2 −� sin ��/2−� sin ��/2 cos ��/2 N ,  ���� = Ocos ��/2 − sin ��/2sin ��/2 cos ��/2 P ,  ���� = Mexp −���/2 00 exp ���/2N, 
��I� = M cosh ��/2 − sinh ��/2− sinh ��/2 cosh ��/2 N ,  ��I� = O cosh ��/2 � sinh ��/2−� sinh ��/2 cosh ��/2 P ,  ��I� = Mexp −��/2 00 exp ��/2N. 

The matrices ����(��), ����(��), and ����(��) are identical to what we had for SU(2) and describe the 

usual spinor rotations. The matrices ��I�(��), ��I�(��), and ��I�(��) are new and describe spinor boosts. 

Since Spin+(1,3) is the exponential map of so(1,3), the Lie group SL(2,ℂ) is isomorphic to Spin+(1,3). 

Now we have everything we need to study how the quantum state of a spin-½ particle transforms under 

a Lorentz boost! As an example, let’s boost the state �̃ = (1, 0)* for “spin up” (with respect to the � 

axis) to half the speed of light (velocity Q = R/2, rapidity � = 0.55). If we boost along the T axis using 

��I�, we get �̃	 = (1.04,−0.28)*, which is an (unnormalized) state with a 93.2% probability for “spin up” 

and a 6.8% probability for “spin down”; boosting along the W axis using 	��I� yields the state 

�̃	 = (1.04,−0.28�)*, which has the same probabilities; finally, boosting along the � axis using ��I� yields 

�̃′ = (0.76, 0)*, which is a pure “spin up” state. So, we find that boosting a spin-½ particle orthogonal to 

its spin axis changes the orientation of the spin axis! In the ultra-relativistic limit (velocity Q → R, rapidity 

� → ∞), a boost along the T axis results in the (normalized) spin state 1/√2	(1, −1)*, which 

corresponds to a spin pointing along the negative T axis, that is, the spin axis has become antiparallel to 

the direction of boost. The same thing happens for a boost along the W axis. 

How does this compare to boosting a 4-vector? If we boost the world line of a stationary vector that 

points in the � direction, T] = (^, 0, 0, 1)*, along the T axis it acquires a time-dependent T component. 

Similarly, if we boost along the W or � axes, it acquires a time-dependent W or � component. 

 


