
E. Sackinger: Groups in Physics (Draft Version 0.2, September 30, 2023) 

 

191 

 

9.6 Noether’s Theorem for Particle Theories 

 
Noether’s theorem associates every global continuous symmetry of a law of time evolution (= invariance 

of the action) with a conserved (= time independent) quantity [TM, Vol 1, Ch. 7 & 8; ENWT, Ch. 5; 

NNCM, Ch. 10.4]. The theorem makes use of the principle of “least” action, which is central to classical 

physics. In the following, we focus on particle theories (as opposed to field theories). Before stating 

Noether’s theorem in its general form, it is instructive to go through some important special cases. We 

analyze invariance under (i) space translations, (ii) linear point transformations, which includes rotations 

as a special case, and (iii) time translations. 

Space Translation. Symmetry with respect to space translations means that the action � �(�� , ���, �)
�

� �, 

which encodes the law of time evolution, stays invariant under the transformation ��� = �� + ���, where 

the �� are (generalized) position coordinates, the ��  represent the shift direction, and � is the 

transformation parameter controlling the amount of shift. Note that the (generalized) velocity 

coordinates are not affected by this transformation: ���� = ���. Because large transformations can be built 

up from small ones, it is sufficient to consider only transformations near the identity, parametrized by 

� = 0. For the action to be invariant with respect to �, it is sufficient (but not necessary) for the 

Lagrangian �(��, ���, �) to be invariant. The left part of the diagram shows how this invariance leads to 

the conserved quantity � = ����  (summation over � implied), where the �� = ��/���� are known as the 

canonical momenta conjugate to ��. A key step in this derivation is the use of the Euler-Lagrange 

equation (blue box), which relates the �� and ���, such that the action becomes extremal (= stationary). 

For the special case in which the Lagrangian does not depend on the position coordinate �� (for a 

particular �), the conserved quantity is simply the corresponding canonical momentum �� = ��/����. For 

example, the Lagrangian � = �
�	����, which lacks a potential-energy term �(�) and therefore describes a 

system without forces, yields the conserved quantity � = ��� , which is just the Newtonian momentum. 
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Linear Point Transformation. Symmetry with respect to linear point transformations means that the 

action stays invariant under the transformation ��� = ���(�)�� (summation over - implied), where ��� 

represents the linear transformation matrix and � is the transformation parameter. Note that the 

velocity coordinates transform like the position coordinates: ���� = ���(�)���. For a small transformation 

near the identity, which is parametrized by � = 0, the transformation is characterized by the generator 

!�� = [����/��]�� . The center part of the diagram shows how this invariance leads to the conserved 

quantity ' = �������, where the �� = ��/���� are again the canonical momenta. 

For the special case of 2D rotations described in Cartesian coordinates, the transformation ���(�) and 

the corresponding generator !��  are given by the matrices 

�(�) = 0cos � − sin �
sin � cos � 6 ,					! = 00 −1

1 0 6. 

Thus, the conserved quantity is ' = 9�: − ;�<, where we denoted the position coordinates �= = 9 and 

�� = ;, and the canonical momenta �= = �< and �� = �:. We recognize ' as the angular momentum! 

Time Translation. Symmetry with respect to time translations means that the action stays invariant 

under the transformation �� = � + �, where � is the transformation parameter controlling the amount 

of time shift. We apply this shift only to the explicit time dependence of the Lagrangian because it is the 

form of the Lagrangian that needs to be time-translation invariant. (If we were to shift the implicit time 

dependence of the dynamical variables ��(�) and ���(�) as well, we would simply redefine the time axis.) 

Time-translation symmetry occurs whenever the Lagrangian has no explicit time dependence [TM, Vol. 

1, Ch. 8]. The right part of the diagram shows how this invariance leads to the conserved quantity * =
����� − �, known as the Hamiltonian, where the �� = ��/���� are again the canonical momenta. The 

Hamiltonian represents the total energy of the system. 

For example, given the Lagrangian � = �
�	���� − �(�), the conserved quantity is * = (��� )�� − � =

�
�	���� + �(�), which is the sum of the kinetic and potential energy and thus represents the total energy. 

Combinations and Generalizations. Symmetry under the transformation ��� = >�(�, ��, �), where the >� 
are arbitrary (differentiable) functions and � = 0 parametrizes the identity, generalizes the above 

symmetries. Now, the action based on the Lagrangian �[>�(�, ��, �), >��(�, ��, �), �] stays invariant and the 

corresponding conserved quantity turns out to be ? = ��@�(��, �), where @�(��, �) = [�>�(�, ��, �)/
��]��  represents the vector field of displacements generated by a small transformation and the �� =
��/���� are the usual canonical momenta [TM, Vol. 1, Ch. 7]. For the special case of translations, we 

have >�(�, ��, �) = �� + ��� and thus @�(��, �) = �� resulting in ? = ����; for the special case of linear 

point transformations, we have >�(�, ��, �) = ���(�)�� and thus @�(��, �) = !����, where !�� =
[����/��]�� , resulting in ? = ��!����. 

Finally, including symmetry under the transformation �� = > (�, ��, �) further generalizes the above 

symmetries. Now, the action based on �[>�(�, ��, �), >��(�, ��, �), > (�, ��, �)] for � = 1, 2, 3, … stays 

invariant and the corresponding conserved quantity turns out to be ? = ��@�(��, �) − *@ (��, �), where 

@ (��, �) = [�> (�, ��, �)/��]��  and * = ����� − � is the Hamiltonian [ENWT, Ch. 4-5]. For the special 

case of a pure time translation, we have > (�, ��, �) = � + �, >�(�, ��, �) = �� and thus @ (��, �) = 1, 

@�(��, �) = 0, resulting in ? = *.  


