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9.8 Noether’s Theorem for Field Theories; Space-Time Symmetries 

Continuing our discussion of Noether’s theorem, we now focus on space-time symmetries (as opposed 

to internal symmetries). We study invariance under (i) global space-time translations and (ii) global 

Lorentz transformations, which combine space rotations and boosts. In the following, we write the field 

components as ��. In the case of a 4-vector field, � is a space-time index. 

Global Space-Time Translation. Symmetry with respect to global space-time translations means that the 

action � ℒ(��(��), ����(��), ��)�� ���, which encodes the law of time evolution, stays invariant under 

the transformation ��′ = �� + ���, where �� represents the global space-time shift direction and � is the 

transformation parameter controlling the amount of shift. Rewritten in terms of components, this 

transformation is (��)� = �� + ���. Note that the field components are not affected by such a shift: 

(��)′ = ��. Similar to our discussion of time-translation symmetry, the space-time translation applies 

only to the explicit space-time dependence of the Lagrangian density and not to the implicit space-time 

dependence of the fields. If the Lagrangian density has no explicit space-time dependence, space-time 

translation symmetry holds for any shift direction ��. The left part of the diagram shows how this 

invariance leads to the locally conserved current ℋ		�� (��)�� (summation over � implied), where 

ℋ		�� (��) = Π		�� (��)����(��) − ���ℒ(��) is known as the Hamiltonian (density) tensor [ENWT, Ch. 6.3] and 

Π		�� (��) = �ℒ/�(����(��)) are the canonical momentum densities, as before. The Hamiltonian tensor 

represents the densities and fluxes of the energy and momentum in the field. Pulling the second index 

of ℋ		��  up and symmetrizing the tensor yields the better-known energy-momentum (density) tensor  �� 

[QFTGA, Ch. 10.3]. A key step in this derivation is the use of the Euler-Lagrange equation (blue box), 

which relates the ��(��) and ����(��), such that the action becomes extremal (= stationary). 

A globally conserved 4-vector can be obtained by integrating the time-like components ℋ		�! (��) or, 

equivalently,  !�(��) over all of space: "� = � !��#�, where we assumed full space-time translation 

symmetry (arbitrary ��). This 4-vector can be broken up into one component for the total field energy 
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9 = � !!�#� and three components for the total field momentum is ": = � !:�#�, where ; = 1, 2, 3, 

and thus is known as the energy-momentum 4-vector. 

Given the Klein-Gordon Lagrangian density ℒ = �
�	��?��? − �

�	@A?A, the canonical momentum densities 

are Π� = ��?. Plugging this into the formula for the Hamiltonian tensor, ℋ		�� = Π���? − ���ℒ, we find 

ℋ		�� = ��?��? − �
�	���(��?��? −@A?A), which evaluates to 

Bℋ		�� C =
D
EF

	ℋ �G?�? �G?�H? �G?�I?−�?�G? ℋ − (�G?)A − (�?)A −�?�H? −�?�I?
−�H?�G? −�H?�? ℋ − (�G?)A − B�H?CA −�H?�I?−�I?�G? −�I?�? −�I?�H? ℋ − (�G?)A − (�I?)AJ

KL, 

where ℋ = ℋ		!! = �
�[(�G?)A + (�?)A + B�H?CA + (�I?)A +@A?A] is the Hamiltonian density (= 

energy density of the field). The total field energy is 9 = �ℋ�#� and the total field momentum in the � 

direction is " = ��G?�?	�#�, etc., all of which are globally conserved. 

Global Lorentz Transformation. Symmetry with respect to global Lorentz transformations means that 

the action stays invariant under the combined transformations of the space-time coordinates (��)� =
Λ		�
� (�)�� and the field components (��)� = Λ%		&

� (�)�&, where Λ		�
� (�) is the 4-vector representation of 

the Lorentz group and Λ%		&
� (�) is the appropriate representation for the field type in question (e.g., 4-

vector, spinor, or scalar field). For a small transformation near the identity (parametrized by � = 0), the 

transformations are characterized by the generators ,		�
� = [�Λ		�

� /��]'(! and ,6		&
� = [�Λ%		&

� /��]'(!. 

These generators are linearly related like ,6		&
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, for Dirac-

spinor fields ,6		&
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O
	[P�]		Q

� [P�]		&
Q ,��, and for scalar fields ,6		&

� = 0. The right part of the diagram 

shows how this invariance leads to the locally conserved current ℐ��+(��),�+, where ℐ��+(��) =

Π		�
� (��)Ω		&

�	�+�&(��) +  ��(��)�+, Π		�
� (��) are the canonical momentum densities, and  ��(��) is the 

energy-momentum tensor, as before. The derivation starts out as usual: chain rule, Euler-Lagrange, and 

product rule (only the result is shown in the diagram). Then we take advantage of the fact that the 

energy-momentum tensor,  ��, is symmetric and the generator of the Lorentz transformation with both 

indices lowered, ,�+, is antisymmetric to extend the �� operator across the product  ��,�+�
+ [QFTGA, 

Ch. 10.3]. Finally, using the antisymmetry of ,�+ again, we can antisymmetrize ℐ��+ without loss of 

generality: ℐR��+ = ℐ�[�+] ≔ �
�
	(ℐ��+ − ℐ�+�). For vector and spinor fields, the conserved currents have 

two parts: one due to the transformation of the field components, Π		�
� Ω		&

�	[�+]�&, and another one due 

to the transformation of the space-time coordinates,  �[��+]. For scalar fields the first part is zero. 

A globally conserved tensor can be obtained by integrating the time-like components ℐR!��(��) over all of 

space: T�� = �ℐR!���#�, where we assumed full Lorentz symmetry (arbitrary ,��). This antisymmetric 

tensor can be broken up into three components for the total angular momentum of the field U: =
�
�
	V:WX � ℐR

!WX�#� and three components for the total center-of-mass motion of the field Y: = �ℐR!!:�#�, 

where ; = 1, 2, 3, and thus is known as the angular-momentum tensor (or 6-angular momentum [RtR, 

Ch. 18.7]). The angular momentum due to the transformation of the field components is known as 

intrinsic angular momentum or spin and the part due to the transformation of the space-time 

coordinates is known as orbital angular momentum, U: = Z: + [:.  


