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9.8 Noether’s Theorem for Field Theories; Space-Time Symmetries

Symmetry: Global Space-Time Translation Symmetry: Global Lorentz Transformation
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Continuing our discussion of Noether’s theorem, we now focus on space-time symmetries (as opposed
to internal symmetries). We study invariance under (i) global space-time translations and (ii) global
Lorentz transformations, which combine space rotations and boosts. In the following, we write the field
components as P %. In the case of a 4-vector field, « is a space-time index.

Global Space-Time Translation. Symmetry with respect to global space-time translations means that the
action f;z L% (x), 0, p% (%), X) d*x, which encodes the law of time evolution, stays invariant under
1

the transformation X’ = x + Aa, where a represents the global space-time shift direction and A is the
transformation parameter controlling the amount of shift. Rewritten in terms of components, this
transformation is (x#)" = x* + Aa*. Note that the field components are not affected by such a shift:
W' = . Similar to our discussion of time-translation symmetry, the space-time translation applies
only to the explicit space-time dependence of the Lagrangian density and not to the implicit space-time
dependence of the fields. If the Lagrangian density has no explicit space-time dependence, space-time
translation symmetry holds for any shift direction a*. The left part of the diagram shows how this
invariance leads to the locally conserved current }(’f,(a?)a” (summation over v implied), where

HE (%) = ¥, (%)0, Y% (X) — 65 L(X) is known as the Hamiltonian (density) tensor [ENWT, Ch. 6.3] and
nt,(x) = 0L/0(9,¥%(x)) are the canonical momentum densities, as before. The Hamiltonian tensor
represents the densities and fluxes of the energy and momentum in the field. Pulling the second index
of }[’f, up and symmetrizing the tensor yields the better-known energy-momentum (density) tensor THY
[QFTGA, Ch. 10.3]. A key step in this derivation is the use of the Euler-Lagrange equation (blue box),
which relates the ¥%(x) and 9,1 %(x), such that the action becomes extremal (= stationary).

A globally conserved 4-vector can be obtained by integrating the time-like components #© (x) or,
equivalently, T°#(x) over all of space: p* = [ T°#*d3x, where we assumed full space-time translation
symmetry (arbitrary a*). This 4-vector can be broken up into one component for the total field energy
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E = [T%d3x and three components for the total field momentum is p; = [ T%d3x, where i = 1,2, 3,
and thus is known as the energy-momentum 4-vector.

Given the Klein-Gordon Lagrangian density £ = %6“(1)6#(1) - %mz(i)z, the canonical momentum densities

are [T* = 9 ¢. Plugging this into the formula for the Hamiltonian tensor, H*, = I1#d,,¢ — 8% £, we find
HY, = 04 pdy ¢ — 16, (0 $d, ¢ — m?2¢?), which evaluates to
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where H = H = 2[(0,¢0)* + (0,¢)* + (aycp)z + (0,¢)% + m?$?] is the Hamiltonian density (=

energy density of the field). The total field energy is E = [ H d3x and the total field momentum in the x
direction is p, = [ 3,0, ¢ d3x, etc., all of which are globally conserved.

Global Lorentz Transformation. Symmetry with respect to global Lorentz transformations means that
the action stays invariant under the combined transformations of the space-time coordinates (x*)' =
A, (1)x" and the field components (%)’ = K%(A)l[)ﬁ, where A¥,, (1) is the 4-vector representation of
the Lorentz group and K“ﬁ (4) is the appropriate representation for the field type in question (e.g., 4-
vector, spinor, or scalar field). For a small transformation near the identity (parametrized by 1 = 0), the

transformations are characterized by the generators w';, = [dA¥, /02] -, and 6“3 = [E)K"‘B/a/ﬂho.

These generators are linearly related like &% = Qaﬁﬂvwﬂv: for 4-vector fields &% = 6,1"6&’(»’@, for Dirac-

spinor fields &“ﬁ = % [v¥#1% [VV]‘Sﬁwﬂv, and for scalar fields @ = 0. The right part of the diagram
shows how this invariance leads to the locally conserved current 7#V¢(x)w,,., where 7#V¢(x) =
H”a(f)ﬂaﬁv’cll)ﬁ(f) + THY(x)x*, TI*, (x) are the canonical momentum densities, and T*’(x) is the
energy-momentum tensor, as before. The derivation starts out as usual: chain rule, Euler-Lagrange, and
product rule (only the result is shown in the diagram). Then we take advantage of the fact that the
energy-momentum tensor, TH*, is symmetric and the generator of the Lorentz transformation with both
indices lowered, w,,, is antisymmetric to extend the d, operator across the product T#" w,,.x" [QFTGA,
Ch. 10.3]. Finally, using the antisymmetry of w,,. again, we can antisymmetrize 7*¥* without loss of

generality: J#VE = gulvel = %(17‘“”C — JHYY, For vector and spinor fields, the conserved currents have
two parts: one due to the transformation of the field components, l'[“aﬂaﬁ[w]i,bﬁ, and another one due

to the transformation of the space-time coordinates, TV x*]. For scalar fields the first part is zero.

A globally conserved tensor can be obtained by integrating the time-like components 74V (x) over all of
space: M¥ = [ %% d3x, where we assumed full Lorentz symmetry (arbitrary Wy ). This antisymmetric
tensor can be broken up into three components for the total angular momentum of the field J; =

e [ 3% d3x and three components for the total center-of-mass motion of the field N; = [ 7°%d3x,
where i = 1, 2, 3, and thus is known as the angular-momentum tensor (or 6-angular momentum [RtR,
Ch. 18.7]). The angular momentum due to the transformation of the field components is known as
intrinsic angular momentum or spin and the part due to the transformation of the space-time
coordinates is known as orbital angular momentum, J; = S; + L;.
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