9.8 Noether's Theorem for Field Theories; Space-Time Symmetries

Symmetry: Global Space-Time Translation

$$\begin{bmatrix} \frac{d}{d\lambda} \mathcal{L} \left(\psi^{\alpha}(\vec{x}), \partial_{\mu} \psi^{\alpha}(\vec{x}), \vec{x} + \lambda \vec{a} \right) \end{bmatrix}_{\lambda=0} = 0$$
$$\frac{\partial \mathcal{L}}{\partial x^{\nu}} a^{\nu} = 0$$
Chain Rule: $\frac{d\mathcal{L}}{dx^{\nu}} = \frac{\partial \mathcal{L}}{\partial \psi^{\alpha}} \partial_{\nu} \psi^{\alpha} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{\alpha})} \partial_{\nu} (\partial_{\mu} \psi^{\alpha}) + \frac{\partial \mathcal{L}}{\partial x^{\nu}}$
$$\begin{bmatrix} \frac{\partial \mathcal{L}}{\partial \psi^{\alpha}} \partial_{\nu} \psi^{\alpha} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{\alpha})} \partial_{\nu} (\partial_{\mu} \psi^{\alpha}) - \frac{d\mathcal{L}}{dx^{\nu}} \end{bmatrix} a^{\nu} = 0$$
Euler-Lagrange: $\frac{\partial \mathcal{L}}{\partial \psi^{\alpha}} = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{\alpha})} \right)$
$$\begin{bmatrix} \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{\alpha})} \right) \partial_{\nu} \psi^{\alpha} + \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{\alpha})} \partial_{\nu} \partial_{\mu} \psi^{\alpha} - \frac{d\mathcal{L}}{dx^{\nu}} \end{bmatrix} a^{\nu} = 0$$
Product Rule: $(\partial_{\mu} A)B + A(\partial_{\mu} B) = \partial_{\mu} (AB)$
$$\begin{bmatrix} \frac{d}{dx^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \psi^{\alpha})} \partial_{\nu} \psi^{\alpha} \right) - \frac{d\mathcal{L}}{dx^{\nu}} \end{bmatrix} a^{\nu} = 0$$

Locally Conserved Currents $(\partial_{\mu}\mathcal{H}^{\mu}_{\nu}(\vec{x})a^{\nu} = 0)$: $\mathcal{H}^{\mu}_{\nu}(\vec{x}) = \frac{\partial \mathcal{L}}{\partial \omega} \psi^{\alpha} - \delta^{\mu}_{\nu}\mathcal{L}$

$$\mathcal{H}^{\mu}_{\nu}(\vec{x}) = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi^{\alpha})} \partial_{\nu}\psi^{\alpha} - \delta^{\mu}_{\nu}\mathcal{L}$$

Symmetry: Global Lorentz Transformation

$$\begin{split} \left[\frac{d}{d\lambda} \mathcal{L} \left(\widetilde{\Lambda}^{\alpha}_{\beta}(\lambda) \psi^{\beta}(\vec{x}), \widetilde{\Lambda}^{\alpha}_{\beta}(\lambda) \partial_{\mu} \psi^{\beta}(\vec{x}), \Lambda(\lambda) \vec{x} \right) \right]_{\lambda=0} &= 0 \\ \frac{\partial \mathcal{L}}{\partial \psi^{\alpha}} \widetilde{\omega}^{\alpha}_{\beta} \psi^{\beta} + \frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi^{\alpha})} \widetilde{\omega}^{\alpha}_{\beta} \partial_{\mu} \psi^{\beta} + \frac{\partial \mathcal{L}}{\partial x^{\nu}} \omega^{\nu}_{\kappa} x^{\kappa} &= 0 \\ \hline \text{Chain Rule, Euler-Lagrange, Product Rule} \\ \frac{d}{dx^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi^{\alpha})} \widetilde{\omega}^{\alpha}_{\beta} \psi^{\beta} \right) + \left[\frac{d}{dx^{\mu}} \left(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\psi^{\alpha})} \partial_{\nu} \psi^{\alpha} \right) - \frac{d\mathcal{L}}{dx^{\nu}} \right] \omega^{\nu}_{\kappa} x^{\kappa} &= 0 \\ \frac{d}{dx^{\mu}} \left(\Pi^{\mu}_{\alpha} \widetilde{\omega}^{\alpha}_{\beta} \psi^{\beta} \right) + \frac{d}{dx^{\mu}} (\mathcal{H}^{\mu}_{\nu}) \omega^{\nu}_{\kappa} x^{\kappa} &= 0 \\ \hline \text{Symmetrize: } \mathcal{H}^{\mu}_{\nu} \to T^{\mu\nu} \\ \frac{d}{dx^{\mu}} \left(\Pi^{\mu}_{\alpha} \widetilde{\omega}^{\alpha}_{\beta} \psi^{\beta} \right) + \frac{d}{dx^{\mu}} (T^{\mu\nu}) \omega_{\nu\kappa} x^{\kappa} &= 0 \\ \hline \text{Symmetric \times Antisymmetric: } T^{\mu\nu} \omega_{\nu\kappa} \partial_{\mu} x^{\kappa} &= 0 \\ \hline \text{Locally Conserved Currents } (\partial_{\mu} \mathcal{I}^{\mu\nu\kappa}(\vec{x}) \omega_{\nu\kappa} = 0): \end{split}$$

 $\mathcal{I}^{\mu\nu\kappa}(\vec{x}) = \Pi^{\mu}_{\ \alpha} \Omega^{\alpha\,\nu\kappa}_{\ \beta} \psi^{\beta} + T^{\mu\nu} x^{\kappa}$

Continuing our discussion of Noether's theorem, we now focus on space-time symmetries (as opposed to internal symmetries). We study invariance under (i) global space-time translations and (ii) global Lorentz transformations, which combine space rotations and boosts. In the following, we write the field components as ψ^{α} . In the case of a 4-vector field, α is a space-time index.

Global Space-Time Translation. Symmetry with respect to global space-time translations means that the action $\int_{x_{\star}}^{x_{2}} \mathcal{L}(\psi^{\alpha}(\vec{x}), \partial_{\mu}\psi^{\alpha}(\vec{x}), \vec{x}) d^{4}x$, which encodes the law of time evolution, stays invariant under the transformation $\vec{x}' = \vec{x} + \lambda \vec{a}$, where \vec{a} represents the global space-time shift direction and λ is the transformation parameter controlling the amount of shift. Rewritten in terms of components, this transformation is $(x^{\mu})' = x^{\mu} + \lambda a^{\mu}$. Note that the field components are not affected by such a shift: $(\psi^{\alpha})' = \psi^{\alpha}$. Similar to our discussion of time-translation symmetry, the space-time translation applies only to the explicit space-time dependence of the Lagrangian density and not to the implicit space-time dependence of the fields. If the Lagrangian density has no explicit space-time dependence, space-time translation symmetry holds for any shift direction a^{μ} . The left part of the diagram shows how this invariance leads to the locally conserved current $\mathcal{H}^{\mu}_{\nu}(\vec{x})a^{\nu}$ (summation over ν implied), where $\mathcal{H}^{\mu}_{\nu}(\vec{x}) = \Pi^{\mu}_{\ \alpha}(\vec{x})\partial_{\nu}\psi^{\alpha}(\vec{x}) - \delta^{\mu}_{\nu}\mathcal{L}(\vec{x})$ is known as the *Hamiltonian (density) tensor* [ENWT, Ch. 6.3] and $\Pi^{\mu}_{\alpha}(\vec{x}) = \partial \mathcal{L}/\partial(\partial_{\mu}\psi^{\alpha}(\vec{x}))$ are the canonical momentum densities, as before. The Hamiltonian tensor represents the densities and fluxes of the energy and momentum in the field. Pulling the second index of \mathcal{H}^{μ}_{ν} up and symmetrizing the tensor yields the better-known *energy-momentum (density) tensor* $T^{\mu\nu}$ [QFTGA, Ch. 10.3]. A key step in this derivation is the use of the Euler-Lagrange equation (blue box), which relates the $\psi^{\alpha}(\vec{x})$ and $\partial_{\mu}\psi^{\alpha}(\vec{x})$, such that the action becomes extremal (= stationary).

A globally conserved 4-vector can be obtained by integrating the time-like components $\mathcal{H}^0_{\mu}(\vec{x})$ or, equivalently, $T^{0\mu}(\vec{x})$ over all of space: $p^{\mu} = \int T^{0\mu} d^3x$, where we assumed full space-time translation symmetry (arbitrary a^{μ}). This 4-vector can be broken up into one component for the total field energy $E = \int T^{00} d^3x$ and three components for the total field momentum is $p_i = \int T^{0i} d^3x$, where i = 1, 2, 3, and thus is known as the *energy-momentum 4-vector*.

Given the Klein-Gordon Lagrangian density $\mathcal{L} = \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - \frac{1}{2}m^{2}\phi^{2}$, the canonical momentum densities are $\Pi^{\mu} = \partial^{\mu}\phi$. Plugging this into the formula for the Hamiltonian tensor, $\mathcal{H}^{\mu}_{\nu} = \Pi^{\mu}\partial_{\nu}\phi - \delta^{\mu}_{\nu}\mathcal{L}$, we find $\mathcal{H}^{\mu}_{\nu} = \partial^{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}\delta^{\mu}_{\nu}(\partial^{\mu}\phi\partial_{\mu}\phi - m^{2}\phi^{2})$, which evaluates to

$$\left(\mathcal{H}^{\mu}_{\nu} \right) = \begin{pmatrix} \mathcal{H} & \partial_t \phi \partial_x \phi & \partial_t \phi \partial_y \phi & \partial_t \phi \partial_z \phi \\ -\partial_x \phi \partial_t \phi & \mathcal{H} - (\partial_t \phi)^2 - (\partial_x \phi)^2 & -\partial_x \phi \partial_y \phi & -\partial_x \phi \partial_z \phi \\ -\partial_y \phi \partial_t \phi & -\partial_y \phi \partial_x \phi & \mathcal{H} - (\partial_t \phi)^2 - (\partial_y \phi)^2 & -\partial_y \phi \partial_z \phi \\ -\partial_z \phi \partial_t \phi & -\partial_z \phi \partial_x \phi & -\partial_z \phi \partial_y \phi & \mathcal{H} - (\partial_t \phi)^2 - (\partial_z \phi)^2 \end{pmatrix}$$

where $\mathcal{H} = \mathcal{H}_0^0 = \frac{1}{2} [(\partial_t \phi)^2 + (\partial_x \phi)^2 + (\partial_y \phi)^2 + (\partial_z \phi)^2 + m^2 \phi^2]$ is the Hamiltonian density (= energy density of the field). The total field energy is $E = \int \mathcal{H} d^3 x$ and the total field momentum in the x direction is $p_x = \int \partial_t \phi \partial_x \phi d^3 x$, etc., all of which are globally conserved.

Global Lorentz Transformation. Symmetry with respect to global Lorentz transformations means that the action stays invariant under the combined transformations of the space-time coordinates $(x^{\mu})' =$ $\Lambda^{\mu}_{\ \nu}(\lambda)x^{\nu}$ and the field components $(\psi^{\alpha})' = \tilde{\Lambda}^{\alpha}_{\ \beta}(\lambda)\psi^{\beta}$, where $\Lambda^{\mu}_{\ \nu}(\lambda)$ is the 4-vector representation of the Lorentz group and $\tilde{\Lambda}^{\alpha}_{\ \beta}(\lambda)$ is the appropriate representation for the field type in question (e.g., 4vector, spinor, or scalar field). For a small transformation near the identity (parametrized by $\lambda = 0$), the transformations are characterized by the generators $\omega^{\mu}_{\nu} = [\partial \Lambda^{\mu}_{\nu} / \partial \lambda]_{\lambda=0}$ and $\tilde{\omega}^{\alpha}_{\beta} = [\partial \tilde{\Lambda}^{\alpha}_{\beta} / \partial \lambda]_{\lambda=0}$. These generators are linearly related like $\tilde{\omega}^{\alpha}_{\ \beta} = \Omega^{\alpha}_{\ \beta\mu} \omega^{\mu}_{\ \nu}$: for 4-vector fields $\tilde{\omega}^{\alpha}_{\ \beta} = \delta^{\alpha}_{\mu} \delta^{\nu}_{\beta} \omega^{\mu}_{\ \nu}$, for Diracspinor fields $\tilde{\omega}^{\alpha}_{\ \beta} = \frac{1}{4} [\gamma^{\mu}]^{\alpha}_{\ \delta} [\gamma^{\nu}]^{\delta}_{\ \beta} \omega_{\mu\nu}$, and for scalar fields $\tilde{\omega}^{\alpha}_{\ \beta} = 0$. The right part of the diagram shows how this invariance leads to the locally conserved current $\mathcal{I}^{\mu\nu\kappa}(\vec{x})\omega_{\nu\kappa}$, where $\mathcal{I}^{\mu\nu\kappa}(\vec{x}) =$ $\Pi^{\mu}_{\ \alpha}(\vec{x})\Omega^{\alpha\,\nu\kappa}_{\ \beta}\psi^{\beta}(\vec{x}) + T^{\mu\nu}(\vec{x})x^{\kappa}, \Pi^{\mu}_{\ \alpha}(\vec{x})$ are the canonical momentum densities, and $T^{\mu\nu}(\vec{x})$ is the energy-momentum tensor, as before. The derivation starts out as usual: chain rule, Euler-Lagrange, and product rule (only the result is shown in the diagram). Then we take advantage of the fact that the energy-momentum tensor, $T^{\mu\nu}$, is symmetric and the generator of the Lorentz transformation with both indices lowered, $\omega_{\nu\kappa}$, is antisymmetric to extend the ∂_{μ} operator across the product $T^{\mu\nu}\omega_{\nu\kappa}x^{\kappa}$ [QFTGA, Ch. 10.3]. Finally, using the antisymmetry of $\omega_{\nu\kappa}$ again, we can antisymmetrize $\mathcal{I}^{\mu\nu\kappa}$ without loss of generality: $\tilde{\mathcal{I}}^{\mu\nu\kappa} = \mathcal{I}^{\mu[\nu\kappa]} \coloneqq \frac{1}{2} (\mathcal{I}^{\mu\nu\kappa} - \mathcal{I}^{\mu\kappa\nu})$. For vector and spinor fields, the conserved currents have two parts: one due to the transformation of the field components, $\Pi^{\mu}_{\ \alpha}\Omega^{\alpha\,[\nu\kappa]}_{\ \beta}\psi^{\beta}$, and another one due to the transformation of the space-time coordinates, $T^{\mu[\nu}x^{\kappa]}$. For scalar fields the first part is zero.

A globally conserved tensor can be obtained by integrating the time-like components $\tilde{J}^{0\mu\nu}(\vec{x})$ over all of space: $M^{\mu\nu} = \int \tilde{J}^{0\mu\nu} d^3x$, where we assumed full Lorentz symmetry (arbitrary $\omega_{\mu\nu}$). This antisymmetric tensor can be broken up into three components for the total angular momentum of the field $J_i = \frac{1}{2} \varepsilon_{ijk} \int \tilde{J}^{0jk} d^3x$ and three components for the total center-of-mass motion of the field $N_i = \int \tilde{J}^{00i} d^3x$, where i = 1, 2, 3, and thus is known as the *angular-momentum tensor* (or *6-angular momentum* [RtR, Ch. 18.7]). The angular momentum due to the transformation of the field components is known as *intrinsic angular momentum* or *spin* and the part due to the transformation of the space-time coordinates is known as *orbital angular momentum*, $J_i = S_i + L_i$.