9.8 Noether's Theorem for Field Theories; Space-Time Symmetries

Symmetry: Global Space-Time Translation

$$
\left[\frac{d}{d \lambda} \mathcal{L}\left(\psi^{\alpha}(\vec{x}), \partial_{\mu} \psi^{\alpha}(\vec{x}), \vec{x}+\lambda \vec{a}\right)\right]_{\lambda=0}=0
$$

$$
\frac{\partial \mathcal{L}}{\partial x^{v}} a^{v}=0
$$

$$
\text { Chain Rule: } \frac{d \mathcal{L}}{d x^{v}}=\frac{\partial \mathcal{L}}{\partial \psi^{\alpha}} \partial_{\nu} \psi^{\alpha}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{\alpha}\right)} \partial_{v}\left(\partial_{\mu} \psi^{\alpha}\right)+\frac{\partial \mathcal{L}}{\partial x^{v}}
$$

$$
\left[\frac{\partial \mathcal{L}}{\partial \psi^{\alpha}} \partial_{v} \psi^{\alpha}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{\alpha}\right)} \partial_{v}\left(\partial_{\mu} \psi^{\alpha}\right)-\frac{d \mathcal{L}}{d x^{v}}\right] a^{v}=0
$$

$$
\text { Euler-Lagrange: } \frac{\partial \mathcal{L}}{\partial \psi^{\alpha}}=\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{\alpha}\right)}\right)
$$

$$
\left[\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{\alpha}\right)}\right) \partial_{\nu} \psi^{\alpha}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{\alpha}\right)} \partial_{\nu} \partial_{\mu} \psi^{\alpha}-\frac{d \mathcal{L}}{d x^{v}}\right] a^{v}=0
$$

$$
\text { Product Rule: }\left(\partial_{\mu} A\right) B+A\left(\partial_{\mu} B\right)=\partial_{\mu}(A B)
$$

$$
\left[\frac{d}{d x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{\alpha}\right)} \partial_{\nu} \psi^{\alpha}\right)-\frac{d \mathcal{L}}{d x^{v}}\right] a^{v}=0
$$

Locally Conserved Currents $\left(\partial_{\mu} \mathcal{H}_{v}^{\mu}(\vec{x}) a^{v}=0\right)$:

$$
\mathcal{H}_{v}^{\mu}(\vec{x})=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{\alpha}\right)} \partial_{\nu} \psi^{\alpha}-\delta_{v}^{\mu} \mathcal{L}
$$

Symmetry: Global Lorentz Transformation
$\left[\frac{d}{d \lambda} \mathcal{L}\left(\widetilde{\Lambda}_{\beta}^{\alpha}(\lambda) \psi^{\beta}(\vec{x}), \widetilde{\Lambda}_{\beta}^{\alpha}(\lambda) \partial_{\mu} \psi^{\beta}(\vec{x}), \Lambda(\lambda) \vec{x}\right)\right]_{\lambda=0}=0$ $\frac{\partial \mathcal{L}}{\partial \psi^{\alpha}} \widetilde{\omega}^{\alpha}{ }_{\beta} \psi^{\beta}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{\alpha}\right)} \widetilde{\omega}^{\alpha}{ }_{\beta} \partial_{\mu} \psi^{\beta}+\frac{\partial \mathcal{L}}{\partial x^{v}} \omega^{v}{ }_{\kappa} x^{\kappa}=0$

Chain Rule, Euler-Lagrange, Product Rule
$\frac{d}{d x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{\alpha}\right)} \widetilde{\omega}^{\alpha}{ }_{\beta} \psi^{\beta}\right)+\left[\frac{d}{d x^{\mu}}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{\alpha}\right)} \partial_{\nu} \psi^{\alpha}\right)-\frac{d \mathcal{L}}{d x^{v}}\right] \omega^{v}{ }_{\kappa} x^{\kappa}=0$

$$
\frac{d}{d x^{\mu}}\left(\Pi_{\alpha}^{\mu} \widetilde{\omega}_{\beta}^{\alpha} \psi^{\beta}\right)+\frac{d}{d x^{\mu}}\left(\mathcal{H}_{v}^{\mu}\right) \omega^{v}{ }_{\kappa} x^{\kappa}=0
$$

Symmetrize: $\mathcal{H}_{\nu}^{\mu} \rightarrow T^{\mu \nu}$

$$
\frac{d}{d x^{\mu}}\left(\Pi_{\alpha}^{\mu} \widetilde{\omega}_{\beta}^{\alpha} \psi^{\beta}\right)+\frac{d}{d x^{\mu}}\left(T^{\mu v}\right) \omega_{v \kappa} x^{\kappa}=0
$$

$$
\text { Symmetric } \times \text { Antisymmetric: } T^{\mu v} \omega_{v \kappa} \partial_{\mu} x^{\kappa}=0
$$

$$
\frac{d}{d x^{\mu}}\left(\Pi_{\alpha}^{\mu} \widetilde{\omega}_{\beta}^{\alpha} \psi^{\beta}+T^{\mu v} \omega_{v \kappa} x^{\kappa}\right)=0
$$

Locally Conserved Currents ($\left.\partial_{\mu} \mathcal{J}^{\mu \nu \kappa}(\vec{x}) \omega_{\nu \kappa}=0\right)$:

$$
\mathcal{J}^{\mu \nu \kappa}(\vec{x})=\Pi_{\alpha}^{\mu} \Omega_{\beta}^{\alpha} \nu \kappa \psi^{\beta}+T^{\mu v} x^{\kappa}
$$

Continuing our discussion of Noether's theorem, we now focus on space-time symmetries (as opposed to internal symmetries). We study invariance under (i) global space-time translations and (ii) global Lorentz transformations, which combine space rotations and boosts. In the following, we write the field components as ψ^{α}. In the case of a 4-vector field, α is a space-time index.

Global Space-Time Translation. Symmetry with respect to global space-time translations means that the action $\int_{x_{1}}^{x_{2}} \mathcal{L}\left(\psi^{\alpha}(\vec{x}), \partial_{\mu} \psi^{\alpha}(\vec{x}), \vec{x}\right) d^{4} x$, which encodes the law of time evolution, stays invariant under the transformation $\vec{x}^{\prime}=\vec{x}+\lambda \vec{a}$, where \vec{a} represents the global space-time shift direction and λ is the transformation parameter controlling the amount of shift. Rewritten in terms of components, this transformation is $\left(x^{\mu}\right)^{\prime}=x^{\mu}+\lambda a^{\mu}$. Note that the field components are not affected by such a shift: $\left(\psi^{\alpha}\right)^{\prime}=\psi^{\alpha}$. Similar to our discussion of time-translation symmetry, the space-time translation applies only to the explicit space-time dependence of the Lagrangian density and not to the implicit space-time dependence of the fields. If the Lagrangian density has no explicit space-time dependence, space-time translation symmetry holds for any shift direction a^{μ}. The left part of the diagram shows how this invariance leads to the locally conserved current $\mathcal{H}^{\mu}{ }_{v}(\vec{x}) a^{\nu}$ (summation over v implied), where $\mathcal{H}_{v}^{\mu}(\vec{x})=\Pi_{\alpha}^{\mu}(\vec{x}) \partial_{v} \psi^{\alpha}(\vec{x})-\delta_{v}^{\mu} \mathcal{L}(\vec{x})$ is known as the Hamiltonian (density) tensor [ENWT, Ch. 6.3] and $\Pi_{\alpha}^{\mu}(\vec{x})=\partial \mathcal{L} / \partial\left(\partial_{\mu} \psi^{\alpha}(\vec{x})\right)$ are the canonical momentum densities, as before. The Hamiltonian tensor represents the densities and fluxes of the energy and momentum in the field. Pulling the second index of \mathcal{H}_{v}^{μ} up and symmetrizing the tensor yields the better-known energy-momentum (density) tensor $T^{\mu \nu}$ [QFTGA, Ch. 10.3]. A key step in this derivation is the use of the Euler-Lagrange equation (blue box), which relates the $\psi^{\alpha}(\vec{x})$ and $\partial_{\mu} \psi^{\alpha}(\vec{x})$, such that the action becomes extremal (= stationary).

A globally conserved 4-vector can be obtained by integrating the time-like components $\mathcal{H}_{\mu}^{0}(\vec{x})$ or, equivalently, $T^{0 \mu}(\vec{x})$ over all of space: $p^{\mu}=\int T^{0 \mu} d^{3} x$, where we assumed full space-time translation symmetry (arbitrary a^{μ}). This 4-vector can be broken up into one component for the total field energy
$E=\int T^{00} d^{3} x$ and three components for the total field momentum is $p_{i}=\int T^{0 i} d^{3} x$, where $i=1,2,3$, and thus is known as the energy-momentum 4-vector.

Given the Klein-Gordon Lagrangian density $\mathcal{L}=\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}$, the canonical momentum densities are $\Pi^{\mu}=\partial^{\mu} \phi$. Plugging this into the formula for the Hamiltonian tensor, $\mathcal{H}_{v}^{\mu}=\Pi^{\mu} \partial_{v} \phi-\delta_{v}^{\mu} \mathcal{L}$, we find $\mathcal{H}^{\mu}{ }_{v}=\partial^{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} \delta_{v}^{\mu}\left(\partial^{\mu} \phi \partial_{\mu} \phi-m^{2} \phi^{2}\right)$, which evaluates to

$$
\left(\mathcal{H}_{v}^{\mu}\right)=\left(\begin{array}{cccc}
\mathcal{H} & \partial_{t} \phi \partial_{x} \phi & \partial_{t} \phi \partial_{y} \phi & \partial_{t} \phi \partial_{z} \phi \\
-\partial_{x} \phi \partial_{t} \phi & \mathcal{H}-\left(\partial_{t} \phi\right)^{2}-\left(\partial_{x} \phi\right)^{2} & -\partial_{x} \phi \partial_{y} \phi & -\partial_{x} \phi \partial_{z} \phi \\
-\partial_{y} \phi \partial_{t} \phi & -\partial_{y} \phi \partial_{x} \phi & \mathcal{H}-\left(\partial_{t} \phi\right)^{2}-\left(\partial_{y} \phi\right)^{2} & -\partial_{y} \phi \partial_{z} \phi \\
-\partial_{z} \phi \partial_{t} \phi & -\partial_{z} \phi \partial_{x} \phi & -\partial_{z} \phi \partial_{y} \phi & \mathcal{H}-\left(\partial_{t} \phi\right)^{2}-\left(\partial_{z} \phi\right)^{2}
\end{array}\right),
$$

where $\mathcal{H}=\mathcal{H}_{0}^{0}=\frac{1}{2}\left[\left(\partial_{t} \phi\right)^{2}+\left(\partial_{x} \phi\right)^{2}+\left(\partial_{y} \phi\right)^{2}+\left(\partial_{z} \phi\right)^{2}+m^{2} \phi^{2}\right]$ is the Hamiltonian density $(=$ energy density of the field). The total field energy is $E=\int \mathcal{H} d^{3} x$ and the total field momentum in the x direction is $p_{x}=\int \partial_{t} \phi \partial_{x} \phi d^{3} x$, etc., all of which are globally conserved.

Global Lorentz Transformation. Symmetry with respect to global Lorentz transformations means that the action stays invariant under the combined transformations of the space-time coordinates $\left(x^{\mu}\right)^{\prime}=$ $\Lambda^{\mu}{ }_{v}(\lambda) x^{v}$ and the field components $\left(\psi^{\alpha}\right)^{\prime}=\widetilde{\Lambda}_{\beta}^{\alpha}(\lambda) \psi^{\beta}$, where $\Lambda_{v}^{\mu}(\lambda)$ is the 4-vector representation of the Lorentz group and $\widetilde{\Lambda}_{\beta}^{\alpha}(\lambda)$ is the appropriate representation for the field type in question (e.g., 4vector, spinor, or scalar field). For a small transformation near the identity (parametrized by $\lambda=0$), the transformations are characterized by the generators $\omega_{\nu}^{\mu}=\left[\partial \Lambda_{\nu}^{\mu} / \partial \lambda\right]_{\lambda=0}$ and $\widetilde{\omega}_{\beta}^{\alpha}=\left[\partial \widetilde{\Lambda}_{\beta}^{\alpha} / \partial \lambda\right]_{\lambda=0}$. These generators are linearly related like $\widetilde{\omega}_{\beta}^{\alpha}=\Omega^{\alpha}{ }_{\beta \mu}^{\nu} \omega_{\nu}^{\mu}$: for 4-vector fields $\widetilde{\omega}_{\beta}^{\alpha}=\delta_{\mu}^{\alpha} \delta_{\beta}^{v} \omega_{v}^{\mu}$, for Diracspinor fields $\widetilde{\omega}_{\beta}^{\alpha}=\frac{1}{4}\left[\gamma^{\mu}\right]^{\alpha}{ }_{\delta}\left[\gamma^{\nu}\right]^{\delta}{ }_{\beta} \omega_{\mu v}$, and for scalar fields $\widetilde{\omega}_{\beta}^{\alpha}=0$. The right part of the diagram shows how this invariance leads to the locally conserved current $\mathcal{J}^{\mu \nu \kappa}(\vec{x}) \omega_{\nu \kappa}$, where $\mathcal{J}^{\mu \nu \kappa}(\vec{x})=$ $\Pi_{\alpha}^{\mu}(\vec{x}) \Omega_{\beta}^{\alpha \nu \kappa} \psi^{\beta}(\vec{x})+T^{\mu \nu}(\vec{x}) x^{\kappa}, \Pi_{\alpha}^{\mu}(\vec{x})$ are the canonical momentum densities, and $T^{\mu \nu}(\vec{x})$ is the energy-momentum tensor, as before. The derivation starts out as usual: chain rule, Euler-Lagrange, and product rule (only the result is shown in the diagram). Then we take advantage of the fact that the energy-momentum tensor, $T^{\mu \nu}$, is symmetric and the generator of the Lorentz transformation with both indices lowered, $\omega_{\nu \kappa}$, is antisymmetric to extend the ∂_{μ} operator across the product $T^{\mu \nu} \omega_{\nu \kappa} x^{\kappa}$ [QFTGA, Ch. 10.3]. Finally, using the antisymmetry of $\omega_{\nu \kappa}$ again, we can antisymmetrize $\mathcal{J}^{\mu \nu \kappa}$ without loss of generality: $\tilde{\mathcal{J}}^{\mu \nu \kappa}=\mathcal{J}^{\mu[\nu \kappa]}:=\frac{1}{2}\left(\mathcal{J}^{\mu \nu \kappa}-\mathcal{J}^{\mu \kappa v}\right)$. For vector and spinor fields, the conserved currents have two parts: one due to the transformation of the field components, $\Pi_{\alpha}^{\mu} \Omega^{\alpha}{ }_{\beta}^{[v \kappa]} \psi^{\beta}$, and another one due to the transformation of the space-time coordinates, $T^{\mu[v} x^{\kappa]}$. For scalar fields the first part is zero.

A globally conserved tensor can be obtained by integrating the time-like components $\tilde{\mathcal{J}}^{0 \mu \nu}(\vec{x})$ over all of space: $M^{\mu \nu}=\int \tilde{\mathcal{J}}^{0 \mu \nu} d^{3} x$, where we assumed full Lorentz symmetry (arbitrary $\omega_{\mu \nu}$). This antisymmetric tensor can be broken up into three components for the total angular momentum of the field $J_{i}=$ $\frac{1}{2} \varepsilon_{i j k} \int \tilde{\mathcal{J}}^{0 j k} d^{3} x$ and three components for the total center-of-mass motion of the field $N_{i}=\int \tilde{\mathcal{J}}^{00 i} d^{3} x$, where $i=1,2,3$, and thus is known as the angular-momentum tensor (or 6-angular momentum [RtR, Ch. 18.7]). The angular momentum due to the transformation of the field components is known as intrinsic angular momentum or spin and the part due to the transformation of the space-time coordinates is known as orbital angular momentum, $J_{i}=S_{i}+L_{i}$.

