
E. Sackinger: Groups in Physics (Draft Version 0.2, September 30, 2023) 

 

193 

 

9.7 Noether’s Theorem for Field Theories; Internal Symmetries 

To get from a particle theory to a field theory, we need the following changes [TM, Vol 3]: 

• The dynamical variables (= degrees of freedom) change from the (generalized) position 

coordinates �� to the field components ��. 
• The dynamical variables change from functions of time, �(�), to functions of space-time, 

�(�, �	) = �(��), where �� = (�, �, �, )�. The position coordinates �	 change from dynamical 

variables to just labels (arguments of the field function). The derivatives change from time 

derivatives, �� = ���, to space-time derivatives: ���. 

• The Lagrangian � changes to the Lagrangian density ℒ, where � = �ℒ ���. 

Noether’s theorem for field theories associates every global continuous symmetry of a law of time 

evolution (= invariance of the action) with a locally conserved current (= continuity equation). In the 

following, we focus on internal symmetries (as opposed to space-time symmetries), which are easier to 

understand and more closely aligned with the symmetries of particle theories. We study invariance 

under (i) global field shifts and (ii) global linear field transformations. 

Global Field Shift. Symmetry with respect to global field shifts means that the action 

� ℒ(��(��), ����(��), ��)��
�� ���, which encodes the law of time evolution, stays invariant under the 

transformation ���(��) = ��(��) + ���, where �� are the field components, �� represents the global shift 

direction in the (internal) field space, and � is the transformation parameter controlling the amount of 

shift. Note that the field derivatives are not affected by this transformation: (����(��))� = ����(��). 
Because large transformations can be built up from small ones, it is sufficient to consider only 

transformations near the identity, parametrized by � = 0. For the action to be invariant with respect to 

�, it is sufficient (but not necessary) for the Lagrangian density ℒ(��(��), ����(��), ��) to be invariant. The 

left part of the diagram shows how this invariance leads to the locally conserved current Π�(��) =

�
��ℒ "�# � �#(��), "�# � ���#(��), ��

$%&
= 0�
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= 0
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Π		�
� (��)7� (summation over 8 implied), where the Π		�

� (��) = �ℒ/�(����(��)) are known as the canonical 

momentum densities conjugate to the fields ��(��). A key step in this derivation is the use of the Euler-

Lagrange equation (blue box), which relates the ��(��) and ����(��), such that the action becomes 

extremal (= stationary). 

The 4-divergence of the current Π�(��) is zero: ��Π�(��) = 0. This amounts to a continuity equation, 

which expresses local conservation, as can be seen by breaking the 4-vector field into a time-like field, 

9(��) = Π&(��), and a space-like field, 	:	(��) = Π;(��) with < = 1, 2, 3, and writing �/��	9���� = ∇AA	 ∙ :	����. 
Integrating this continuity equation over all of space, applying Gauss’ theorem (second equal sign shown 

below), and assuming that :	��� vanishes at infinity (third equal sign) yields zero, 

�
��0 9����	���

	

2→4
= 0 ∇AA	 ∙ :	����	���

	

2→4
= 0 :	���� ∙ CA		�D�

	

E→4
= 0, 

revealing that the integrated time-like momentum density is a globally conserved quantity. 

The time-like momentum density, 9����, plays an important role in quantum field theory (QFT) [QFTGA, 

Ch. 11; PfS, Ch. 5.2; NNQFT, Ch. 8.2]. Just like we are able to upgrade classical mechanics to quantum 

mechanics by imposing the commutation relations F��, G#H = 8ℏJ�#  (turning the variables G�  into 

operators), we can upgrade classical field theory to QFT by imposing the commutation relations 

F������, 9#����H = 8J��� − ���J�#, at least for bosonic fields (making the fields 9����� operator valued). 

Global Linear Field Transformation. Symmetry with respect to global linear field transformations means 

that the action stays invariant under the transformation ������� = "�#����#����, where "�# represents the 

global linear transformation matrix and � is the transformation parameter. Note that the field 

derivatives transform like the field itself: ����������� = "�#������#����. For a small transformation near 

the identity (parametrized by � = 0), the transformation is characterized by the generator '�# =
[�"�#/��]$%&. The right part of the diagram shows how this invariance leads to the locally conserved 

current 5����� = Π		�
� ����'�#�#����, where the Π		�

� ���� = �ℒ/����������� are again the canonical 

momentum densities. A globally conserved quantity, 6, is obtained by integrating the time-like 

component 5&���� over all of space. The locally conserved current, 5�����, is sometimes referred to as a 

Noether current and the globally conserved quantity, 6, as a Noether charge. 

For the complex field ����� with global U(1) symmetry, we can identify �N = � and �D = �O, 

"��� = PQ�$ 0
0 QR�$S ,					' = T8 0

0 −8U. 
Thus, the locally conserved current is 5����� = 8Π		N

� ��������� − 8Π		D
� �����O����. Given the Dirac Lagrangian 

density, we find Π		N
� = �ℒ/������ = 8�OW� and Π		D

� = �ℒ/�����O� = 0 and hence 5� = −�OW��. 

Multiplying this current by the elementary charge −�, yields the electric 4-current 5XYXZ� = ��OW�� of a 

charged Dirac spinor field.  Integrating the time-like component of this electric current over all of space 

yields the conserved electric charge 6XYXZ = � ��[���� [QFTGA, Ch. 38.2; PfS, Ch. 7.1.6]. 

Similarly, a weakly interacting doublet field with global SU(2) symmetry implies the conservation of 

(weak) isospin [PfS, Ch. 7.7] and a strongly interacting triplet field with global SU(3) symmetry implies 

the conservation of color charge [PfS, Ch. 7.8.1]. 


