3.16 SU(2): Tensor-Product Representation on 4D Vectors; Singlet and Triplet States

To bring the tensor-product representation from the previous example into a more familiar form, we "flatten" the rank- 2 spinor from its 2×2-matrix form into a 4 -component vector, that is, we map $\psi=$ $\left(\begin{array}{ll}\psi_{11} & \psi_{12} \\ \psi_{21} & \psi_{22}\end{array}\right)$ to $\tilde{\psi}=\left(\psi_{11}, \psi_{12}, \psi_{21}, \psi_{22}\right)^{T}$. Now, we have to find out how the Lie-group elements act on this column vector. It turns out that the sandwich operation $\psi^{\prime}=U \psi U^{T}$ from before maps to the straightforward matrix-vector product $\tilde{\psi}^{\prime}=\widetilde{U} \tilde{\psi}$, where \widetilde{U} is now a 4×4 matrix. This new matrix is related to U by the Kronecker product as follows: $\widetilde{U}=U \otimes U=\left(\begin{array}{ll}U_{11} U & U_{12} U \\ U_{21} U & U_{22} U\end{array}\right)$. Note that each element of the 2×2 matrix on the right-hand side is a 2×2 matrix, that is, the whole object is a 4×4 matrix. (For more on the Kronecker product, see [TM, Vol. II, Ch.7].)

Next, we have to find out how the Lie-algebra elements act on the column vector. It turns out that the two-part operation $\psi^{\prime}=J \psi+\psi J^{T}$ from before maps to the straightforward matrix-vector product $\tilde{\psi}^{\prime}=$ $\tilde{J} \tilde{\psi}$, where \tilde{J} is now a 4×4 matrix as well. To find \tilde{J}, we differentiate \widetilde{U} with respect to a parameter and evaluate the result at the identity element, which yields $\tilde{J}=J \otimes I+I \otimes J=\left(\begin{array}{ll}J_{11} I & J_{12} I \\ J_{21} I & J_{22} I\end{array}\right)+\left(\begin{array}{ll}J & 0 \\ 0 & J\end{array}\right)$, where I is the 2×2 identity matrix and 0 is the 2×2 zero matrix. Knowing the basis generators J_{x}, J_{y}, J_{z} of the defining representation, it is easy to calculate the basis generators $\tilde{J}_{x}, \tilde{J}_{y}, \tilde{J}_{z}$ of our new 4dimensional representation (see the lower branch of the diagram).

Now that we are back on familiar territory, we can calculate the eigenvectors of \tilde{J}_{Z} and construct a meaningful basis for our new 4-dimensional representation space. Solving the (trivial) eigenequation $\tilde{J}_{z} \Psi_{m}=m \Psi_{m}$, we find the eigenvector $\Psi_{+1}=(1,0,0,0)^{T}$ with eigenvalue $m=+1$, the eigenvector $\Psi_{-1}=(0,0,0,1)^{T}$ with eigenvalue $m=-1$, and the eigenspace $\Psi_{0}=(0, \alpha, \beta, 0)^{T}$ with eigenvalue $m=0$. The last two eigenvectors can be chosen arbitrarily within the 2 -dimensional space (= plane) given by Ψ_{0}. So, just like in the case of the infinite-dimensional representation on functions, the
operator \tilde{J}_{z} alone can't give us a unique basis. Again, we need a second operator that commutes with \tilde{J}_{z}, such as the Casimir operator $J_{C}^{2}=\tilde{J}_{x}^{2}+\tilde{J}_{y}^{2}+\tilde{J}_{z}^{2}$, which we are already familiar with. Plugging in the basis generators, we find $J_{C}^{2}=\sum_{i=1}^{3}\left(J_{i} \otimes I+I \otimes J_{i}\right)^{2}=\frac{1}{2}\left(3 I+\sigma_{x} \otimes \sigma_{x}+\sigma_{y} \otimes \sigma_{y}+\sigma_{z} \otimes \sigma_{z}\right)=\left(\begin{array}{cccc}2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$. Solving the simultaneous eigenequations $\tilde{J}_{z} \Psi_{j, m}=m \Psi_{j, m}$ and $J_{C}^{2} \Psi_{j, m}=j(j+1) \Psi_{j, m}$, we find the four joint eigenvectors $\Psi_{0,0}=1 / \sqrt{2} \cdot(0,1,-1,0)^{T}, \Psi_{1,0}=1 / \sqrt{2} \cdot(0,1,1,0)^{T}, \Psi_{1,+1}=(1,0,0,0)^{T}$, and $\Psi_{1,-1}=(0,0,0,1)^{T}$, all of which are now unique. The eigenspace with $m=0$ is now spanned by two eigenvectors, one with $j=0$ and one with $j=1$.

Is this 4-dimensional representation reducible? Yes, it is: the eigenvalue, $j(j+1)$, of the Casimir operator delineates the irreducible representations. The representation breaks up into a 1-dimensional representation acting on $\Psi_{0,0}(j=0)$ and a 3-dimensional representation acting on the space spanned by $\Psi_{1,+1}, \Psi_{1,0}$, and $\Psi_{1,-1}(j=1)$.

In quantum mechanics, the four eigenvectors are states of definite combined spin. The (squared) total spin is given by the eigenvalue $j(j+1)$ and the spin along the z axis is given by the eigenvalue m. How are we to interpret these four eigenstates? The state $\Psi_{1,+1}=(1,0,0,0)^{T}$ represents both particles with "spin up", that is, each spin is $+1 / 2$ (along the z axis), resulting in a combined spin of +1 (along the same axis). Similarly, the state $\Psi_{1,-1}=(0,0,0,1)^{T}$ represents both particles with "spin down" $(-1 / 2)$, resulting in a combined spin of -1 . In both of these states, the particles are not entangled. In contrast, the remaining two states $\Psi_{0,0}=1 / \sqrt{2} \cdot(0,1,-1,0)^{T}$ and $\Psi_{1,0}=1 / \sqrt{2} \cdot(0,1,1,0)^{T}$ represent entangled particles. When measured along the z axis, one particle comes out as up (spin $+1 / 2$) and the other one as down (spin $-1 / 2$), resulting in a combined spin of zero. Whereas the measured spin of each particle is random, the combined spin (along the z axis) is well defined and always zero.

The $\Psi_{0,0}$ state is called a singlet state and a state in the space spanned by $\Psi_{1,+1}, \Psi_{1,0}, \Psi_{1,-1}$ is called a triplet state. The singlet state is characterized by the combined total spin $j=0$. This state doesn't change under rotation and the two particles are always maximally entangled. If separated and measured, the two particles exhibit "spooky action at a distance". A triplet state is characterized by the combined total spin $j=1$. The components of this state change under rotation and so does the amount of entanglement between the two particles. Entanglement is maximal for a pure $\Psi_{1,0}$ state. (See [TM, Vol. II, Ch. 6-7] for more on singlet and triplet states.)

A good example for a system consisting of two spin- $1 / 2$ particles is the hydrogen atom. One particle is the proton in the nucleus and the other particle is the electron (which we assume to be in its ground-state orbital). The combined system can be in any superposition of the singlet and a triplet state. Because the two charged and spinning particles have a magnetic moment, the energy of the singlet state differs slightly from that of a triplet state. (All the triplet states must have the same energy due to rotational symmetry.) This effect is known as the hyperfine splitting of the energy levels in the hydrogen atom [FLP, Vol. III, Ch. 12]. More specifically, the energy of the singlet state is lower than that of a triplet state by $h \times(1420 \mathrm{GHz})$. If we wait long enough, the hydrogen atom "decays" into the lower-energy, maximallyentangled singlet state. (Note that the energy operator [= Hamiltonian] for this system, $H \propto \sigma_{x} \otimes \sigma_{x}+$ $\sigma_{y} \otimes \sigma_{y}+\sigma_{z} \otimes \sigma_{z}$ [FLP, Vol. III, Ch. 12], is closely related to the Casimir operator.)

