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3.15 SU(2): Tensor-Product Representation; Two Spin-½ Particles and Entanglement 

Let’s switch gears and move on to another type of representation: the tensor-product representation. If 

we have two �-dimensional representations on vectors, we can form the tensor product of the two 

representation spaces and get a (� × �)-dimensional representation on (rank-2) tensors. In this 

example, we take two copies of the 2-dimensional representation of SU(2), which act on spinors, and 

construct a new 4-dimensional representation, which acts on so-called rank-2 spinors or 2-index spinors 

[RtR, Ch. 22.8; PfS, Ch. 3.7.8]. 

The vectors �10� and �01� form a basis for the 2-dimensional vector space ℂ�. To construct a basis for the 

tensor-product space ℂ�⨂ℂ�, we take the tensor product (= outer product) of all possible basis-vector 

pairs: �10� ⋅ �10�
� = �1 00 0�,   �10� ⋅ �01�

� = �0 10 0�,   �01� ⋅ �10�
� = �0 01 0�,   �01� ⋅ �01�

� = �0 00 1�. 

Given this tensor basis, a general element of the 4-dimensional tensor-product space can be written as 

� = ���� ������ ����, just like a general element of the spinor space can be written as  = ����. 

Mathematically, the object � is a tensor, but in this context, it is usually called a rank-2 spinor. 

It is important to distinguish between the Cartesian product and the tensor product. Whereas the 

Cartesian-product space, ℂ� × ℂ�, consists of pairs of spinors, the tensor-product space, ℂ�⨂ℂ�, 

consists of rank-2 spinors. Not all rank-2 spinors can be expressed as the (tensor) product of spinor pairs, 

as we will see momentarily. In fact, given a �-dimensional vector space, the Cartesian-product space is 

2� dimensional whereas the tensor-product space is �� dimensional! (For � = 2, as in our example, 

they both happen to be four dimensional.) 

In quantum mechanics, a spinor describes the state of a spin-½ particles. What then do rank-2 spinors 

describe? They describe the combined state of two spin-½ particles! Let’s make some examples. For 
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each individual particle we take the state  � �10� to mean “spin up” and the state  � �01� to mean 

“spin down”. Then, the combined state � � �1 00 0� � �10� ⋅ �10�
�

 simply means that both particles are 

“spin up”. Next, what does the state � � �
� � 1 ��1 ��� represent? This looks messy, but it can be written 

as the tensor product of two spinors: 
�
√� � 1�1� ⋅ �

√� �1� �
�
. It is a so-called product state. We can interpret 

this combined state as one particle being in the superposition 
�
√� � 1�1� and the other particle being in the 

superposition 
�
√� �1� �. Each particle is in its own superposition of up and down. Finally, let’s look at the 2-

particle state � = �
√� � 0 1�1 0�. This state cannot be written as a product of two spinors, only as the sum 

of products: 
�
√� �10� ∙ �01�

� � �
√� �01� ∙ �10�

�
. It is a so-called entangled state! The interpretation of this state 

is that the spins of the two particles are always opposite, but we don’t know anything about each 

particle’s spin quantum state [TM, Vol. II, Ch. 6]. Much of quantum mechanics’ weirdness comes from 

the existence of such entangled states. Note that it is these entangled states that makes it necessary to 

use the tensor-product space to represent multi-particle states. If only product states existed, each 

particle could be described by its own state. 

Now that we have a new representation space, we need to work out how the Lie-group elements act on 

it. We know how to construct a basis for rank-2 spinors from the basis of spinors and we know how to 

transform spinors, that’s all we need! Rank-2 basis spinors are constructed from two basis spinors,  

and @, by taking the tensor product � = @� and the basis spinors transform like ′ = � and @′ =
�@. Thus, rank-2 basis spinors transform like �′ = �(�@)� = �@��� = ����. If we define the 

operator �C to act on rank-2 spinors like �C� ∶= ����, we can simply write �′ = �C�. We can think of 

this transformation as follows: first � acts on all the column vectors of � and then it acts on all the row 

vectors of the result, ���� = (�(��)�)� (reversing the order, ���� = �(���)�, yields the same 

result). Although we derived this transformation for rank-2 basis spinors, it works for any rank-2 spinor 

that can be expressed in this basis (see the lower branch of the diagram). 

How do the Lie-algebra elements of this new representation act on rank-2 spinors? To find out, we take 

the transformation law from above and write it as a function of the rotation angle & about a particular 

axis, �(&)��(&)�, take the derivative with respect to &, and set & = 0. Using the product rule, we find 

.��(0)� +�(0)�.� = .� + �.�, where . is the generator of �(&) from the spinor representation (see 

the lower branch of the diagram). Finally, we can define a new operator .E that acts on rank-2 spinors like 

.E� ∶= .� + �.�. 

In quantum mechanics, the operator .E represents the observable for the combined spin of our two-spin 

system (along a given axis). To understand this operator better, let’s act with it on the product state � =
@�, where  is the state of a first particle and @ is the state of a second particle: .E� = .� + �.� =
.@� + @�.� = (.)@� +(.@)�. Note that the first part of the operator acts only on the part of 

the state associated with the first particle, , and the second part acts only on the part of the state 

associated with the second particle, @. If the two states are eigenstates of . with eigenvalues FG and FH, 

that is, . = FG and .@ = FH@, then he have .E@� = ((FG)@� + (FH@)� = (FG + FH)@�, which 

means that the eigenvalue of .E is FG + FH. In this sense, we can think of the combined spin as the sum of 

the two constituent spins. 


