

3.15 SU(2): Tensor-Product Representation; Two Spin-¹/₂ Particles and Entanglement

Let's switch gears and move on to another type of representation: the *tensor-product representation*. If we have two k-dimensional representations on vectors, we can form the tensor product of the two representation spaces and get a $(k \times k)$ -dimensional representation on (rank-2) tensors. In this example, we take two copies of the 2-dimensional representation of SU(2), which act on spinors, and construct a new 4-dimensional representation, which acts on so-called *rank-2 spinors* or *2-index spinors* [RtR, Ch. 22.8; PfS, Ch. 3.7.8].

The vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ form a basis for the 2-dimensional vector space \mathbb{C}^2 . To construct a basis for the tensor-product space $\mathbb{C}^2 \otimes \mathbb{C}^2$, we take the tensor product (= outer product) of all possible basis-vector pairs: $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}^T = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}^T = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}^T = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}^T = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Given this tensor basis, a general element of the 4-dimensional tensor-product space can be written as $\tilde{\psi} = \begin{pmatrix} \tilde{\psi}_{11} & \tilde{\psi}_{12} \\ \tilde{\psi}_{21} & \tilde{\psi}_{22} \end{pmatrix}$, just like a general element of the spinor space can be written as $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$. Mathematically, the object $\tilde{\psi}$ is a tensor, but in this context, it is usually called a rank-2 spinor.

It is important to distinguish between the *Cartesian product* and the *tensor product*. Whereas the Cartesian-product space, $\mathbb{C}^2 \times \mathbb{C}^2$, consists of *pairs* of spinors, the tensor-product space, $\mathbb{C}^2 \otimes \mathbb{C}^2$, consists of rank-2 spinors. Not all rank-2 spinors can be expressed as the (tensor) product of spinor pairs, as we will see momentarily. In fact, given a k-dimensional vector space, the Cartesian-product space is 2k dimensional whereas the tensor-product space is k^2 dimensional! (For k = 2, as in our example, they both happen to be four dimensional.)

In quantum mechanics, a spinor describes the state of a spin-½ particles. What then do rank-2 spinors describe? They describe the *combined* state of *two* spin-½ particles! Let's make some examples. For

each individual particle we take the state $\psi = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to mean "spin up" and the state $\psi = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to mean "spin down". Then, the combined state $\tilde{\psi} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}^T$ simply means that both particles are "spin up". Next, what does the state $\tilde{\psi} = \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ represent? This looks messy, but it can be written as the tensor product of two spinors: $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \cdot \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix}^T$. It is a so-called *product state*. We can interpret this combined state as one particle being in the superposition $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and the other particle being in the superposition $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and the other particle being in the superposition $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and the other particle being in the superposition $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and the other particle being in the superposition $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and the other particle being in the superposition $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and the other particle being in the superposition $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and the other particle being in the superposition $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ of products: $\frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -1 & 0 \end{pmatrix}$. This state *cannot* be written as a product of two spinors, only as the sum of products: $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix}^T - \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}^T$. It is a so-called *entangled state*! The interpretation of this state is that the spins of the two particles are always opposite, but we don't know *anything* about each particle's spin quantum state [TM, Vol. II, Ch. 6]. Much of quantum mechanics' weirdness comes from the existence of such entangled states. Note that it is these entangled states that makes it necessary to use the tensor-product space to represent multi-particle states. If only product states existed, each particle could be described by its own state.

Now that we have a new representation space, we need to work out how the Lie-group elements act on it. We know how to construct a basis for rank-2 spinors from the basis of spinors and we know how to transform spinors, that's all we need! Rank-2 basis spinors are constructed from two basis spinors, ψ and ϕ , by taking the tensor product $\tilde{\psi} = \psi \phi^T$ and the basis spinors transform like $\psi' = U\psi$ and $\phi' = U\phi$. Thus, rank-2 basis spinors transform like $\tilde{\psi}' = U\psi(U\phi)^T = U\psi\phi^T U^T = U\tilde{\psi}U^T$. If we define the operator \tilde{U} to act on rank-2 spinors like $\tilde{U}\tilde{\psi} := U\tilde{\psi}U^T$, we can simply write $\tilde{\psi}' = \tilde{U}\tilde{\psi}$. We can think of this transformation as follows: first U acts on all the column vectors of $\tilde{\psi}$ and then it acts on all the row vectors of the result, $U\tilde{\psi}U^T = (U(U\tilde{\psi})^T)^T$ (reversing the order, $U\tilde{\psi}U^T = U(U\tilde{\psi}^T)^T$, yields the same result). Although we derived this transformation for rank-2 basis spinors, it works for *any* rank-2 spinor that can be expressed in this basis (see the lower branch of the diagram).

How do the Lie-algebra elements of this new representation act on rank-2 spinors? To find out, we take the transformation law from above and write it as a function of the rotation angle θ about a particular axis, $U(\theta)\tilde{\psi}U(\theta)^T$, take the derivative with respect to θ , and set $\theta = 0$. Using the product rule, we find $J\tilde{\psi}U(0)^T + U(0)\tilde{\psi}J^T = J\tilde{\psi} + \tilde{\psi}J^T$, where *J* is the generator of $U(\theta)$ from the spinor representation (see the lower branch of the diagram). Finally, we can define a new operator \tilde{J} that acts on rank-2 spinors like $\tilde{J}\tilde{\psi} := J\tilde{\psi} + \tilde{\psi}J^T$.

In quantum mechanics, the operator \tilde{J} represents the observable for the *combined* spin of our two-spin system (along a given axis). To understand this operator better, let's act with it on the product state $\tilde{\psi} = \psi \phi^T$, where ψ is the state of a first particle and ϕ is the state of a second particle: $\tilde{J}\tilde{\psi} = J\tilde{\psi} + \tilde{\psi}J^T = J\psi\phi^T + \psi\phi^T J^T = (J\psi)\phi^T + \psi(J\phi)^T$. Note that the first part of the operator acts only on the part of the state associated with the first particle, ψ , and the second part acts only on the part of the state associated with the second particle, ϕ . If the two states are eigenstates of J with eigenvalues j_{ψ} and j_{ϕ} , that is, $J\psi = j_{\psi}\psi$ and $J\phi = j_{\phi}\phi$, then he have $\tilde{J}\psi\phi^T = ((j_{\psi}\psi)\phi^T + \psi(j_{\phi}\phi)^T = (j_{\psi} + j_{\phi})\psi\phi^T$, which means that the eigenvalue of \tilde{J} is $j_{\psi} + j_{\phi}$. In this sense, we can think of the combined spin as the sum of the two constituent spins.