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3.19 SU(2): Representation on Two-Particle Wave Functions 

After discussing two spin-½ particles with fixed positions, we now turn to two particles that can move 

around freely (ignoring the spin in this example). To describe such a two-particle system we need a wave 

function that depends on the positions of both particles. 

The upper branch of the diagram shows the familiar representation on single-particle wave functions. 

The representation space consists of the square-integrable complex functions of three real variables, ��(ℝ�). For a two-particle system (lower branch of the diagram), the representation space is the tensor 

product of two copies of this space, ��(ℝ�)⨂��(ℝ�). It turns out that this is the same as the space of 

square-integrable complex functions of six real variables: ��(ℝ�)⨂��(ℝ�) = ��(ℝ� × ℝ�) = ��(ℝ
) 
[QTGR, Ch. 9.1]. The six variables represent the 3D position coordinates of particles � and �: (�� , ��). A 

point in this 6-dimensional space describes a so-called configuration of the system. It is essential to 

realize that the wave function of a two-particle system, ��(�� , ��), is defined on a 6-dimensional 

configuration space, not on ordinary physical space. 

As pointed out earlier, it is important to distinguish between the Cartesian product and the tensor 

product. Whereas the Cartesian-product space, ��(ℝ�) × ��(ℝ�), consists of pairs of wave functions, (��(�), ��(�)), the tensor-product space, ��(ℝ�)⨂��(ℝ�), consists of wave functions that depend on 

a pair of arguments, ��(�� , ��). There are many functions ��(��, ��) that cannot be expressed as the 

product of two functions ��(��) ∙ ��(��). In other words, only some two-particle wave functions can 

be written as a product of two single-particle wave functions, while most two-particle wave functions 

cannot be split up in this way. If a wave function can be split up, it is a product wave function; if it cannot 

be split up, it is an entangled wave function. In the first case, the two particles can be treated as 

independent entities described by two wave functions in physical space that look just like classical fields; 

in the second case, the two particles are quantum-mechanically linked together and must be described 

by a single wave function. All this is completely analogous to what we have said earlier about two spin-½ 

particles with fixed positions.  
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A simple example of a product wave function is ����� , ��� � +1��9�:∙;�:�+1��9�<∙;�<�. The first factor describes 

a (static) plane wave oriented in the direction =9�� and the second factor describes another plane wave 

oriented in the direction =9��. Quantum mechanically, the wave function represents one particle with 

momentum =9�� and another particle with momentum =9�� (in units for which ℏ � 1). Now, let’s consider 

the superposition ����� , ��� � ∑ +1��9� ∙;�:�+1���9� ∙;�<��9� , where the sum goes over all possible directions =9�. 
This is no longer a product wave function! It represents two particles going in opposite directions with 

the same absolute momentum, where all directions are equally likely. Think of a particle at rest that 

decays into two particles of equal mass. Although we know the two-particle wave function exactly, we 

don’t know anything about the individual particles: we are dealing with an entangled wave function! 

(Note how a probabilistic theory that conserves momentum forces entanglement on us!) 

How does our two-particle wave function transform under SU(2)? We know that a single-particle wave 

function transforms like �′(�) = �(����), where � is the 3D rotation matrix. A product wave function 

of two particles thus transforms like ��′(�� , ��) = 	��(�����) ∙ ��(�����). We therefore expect a 

general two-particle wave function to transform like ��′(��, ��) = 	��(�����, �����). Splitting off the 

transformation from the wave function, we can write �# =	∙ (��� 	 ∙	, ��� 	 ∙	), as shown in the lower 

branch of the diagram. This makes intuitive sense: we simply rotate the position coordinates of both 

particles in the same way. 

What are the basis generators of this representation? A rotation about the A-axis by the angle �B can be 

written explicitly as 

�#(�B)	��(�� , ��) = �� CD �� cos�B + �� sin�B−�� sin�B + �� cos �B	�� J , D �� cos �B + �� sin�B−�� sin �B + �� cos �B	�� JK. 
Taking the derivative with respect to �B, setting �B to zero, and multiplying by ) yields the generator '3B 

acting on the wave function: 

'3B	��(�� , ��) = ) C ,��,�� ∙ �� +
,��,�� ∙ (−��) +

,��,�� ∙ �� +
,��,�� ∙ (−��)K. 

Splitting off the operator from the wave function, we get the basis generator 

'3B = −) M�� ,,�� − �� ,,�� + �� ,,�� − �� ,,��N = −)O��� × ∇99���B + ��� × ∇99���BP, 
where the second form uses the A components of two different cross products. The other two basis 

generators can be found in the same way and are just the  and Q components of the same cross 

products (see the diagram). In quantum mechanics, these generators correspond to the observables for 

the combined orbital angular momentum of the two-particle system. Each operator has two parts, which 

we can associate with the angular momenta of particles � and �. 

  


