3.19 SU(2): Representation on Two-Particle Wave Functions

After discussing two spin- $1 / 2$ particles with fixed positions, we now turn to two particles that can move around freely (ignoring the spin in this example). To describe such a two-particle system we need a wave function that depends on the positions of both particles.

The upper branch of the diagram shows the familiar representation on single-particle wave functions. The representation space consists of the square-integrable complex functions of three real variables, $L^{2}\left(\mathbb{R}^{3}\right)$. For a two-particle system (lower branch of the diagram), the representation space is the tensor product of two copies of this space, $L^{2}\left(\mathbb{R}^{3}\right) \otimes L^{2}\left(\mathbb{R}^{3}\right)$. It turns out that this is the same as the space of square-integrable complex functions of six real variables: $L^{2}\left(\mathbb{R}^{3}\right) \otimes L^{2}\left(\mathbb{R}^{3}\right)=L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)=L^{2}\left(\mathbb{R}^{6}\right)$ [QTGR, Ch. 9.1]. The six variables represent the 3D position coordinates of particles a and $b:\left(\vec{x}_{a}, \vec{x}_{b}\right)$. A point in this 6 -dimensional space describes a so-called configuration of the system. It is essential to realize that the wave function of a two-particle system, $\tilde{\psi}\left(\vec{x}_{a}, \vec{x}_{b}\right)$, is defined on a 6 -dimensional configuration space, not on ordinary physical space.

As pointed out earlier, it is important to distinguish between the Cartesian product and the tensor product. Whereas the Cartesian-product space, $L^{2}\left(\mathbb{R}^{3}\right) \times L^{2}\left(\mathbb{R}^{3}\right)$, consists of pairs of wave functions, $\left(\psi_{a}(\vec{x}), \psi_{b}(\vec{x})\right)$, the tensor-product space, $L^{2}\left(\mathbb{R}^{3}\right) \otimes L^{2}\left(\mathbb{R}^{3}\right)$, consists of wave functions that depend on a pair of arguments, $\tilde{\psi}\left(\vec{x}_{a}, \vec{x}_{b}\right)$. There are many functions $\tilde{\psi}\left(\vec{x}_{a}, \vec{x}_{b}\right)$ that cannot be expressed as the product of two functions $\psi_{a}\left(\vec{x}_{a}\right) \cdot \psi_{b}\left(\vec{x}_{b}\right)$. In other words, only some two-particle wave functions can be written as a product of two single-particle wave functions, while most two-particle wave functions cannot be split up in this way. If a wave function can be split up, it is a product wave function; if it cannot be split up, it is an entangled wave function. In the first case, the two particles can be treated as independent entities described by two wave functions in physical space that look just like classical fields; in the second case, the two particles are quantum-mechanically linked together and must be described by a single wave function. All this is completely analogous to what we have said earlier about two spin- $1 / 2$ particles with fixed positions.

A simple example of a product wave function is $\tilde{\psi}\left(\vec{x}_{a}, \vec{x}_{b}\right)=e^{i\left(\vec{k}_{a} \cdot \vec{x}_{a}\right)} e^{i\left(\vec{k}_{b} \cdot \vec{x}_{b}\right)}$. The first factor describes a (static) plane wave oriented in the direction \vec{k}_{a} and the second factor describes another plane wave oriented in the direction \vec{k}_{b}. Quantum mechanically, the wave function represents one particle with momentum \vec{k}_{a} and another particle with momentum \vec{k}_{b} (in units for which $\hbar=1$). Now, let's consider the superposition $\tilde{\psi}\left(\vec{x}_{a}, \vec{x}_{b}\right)=\sum_{\vec{k}} e^{i\left(\vec{k} \cdot \vec{x}_{a}\right)} e^{i\left(-\vec{k} \cdot \vec{x}_{b}\right)}$, where the sum goes over all possible directions \vec{k}. This is no longer a product wave function! It represents two particles going in opposite directions with the same absolute momentum, where all directions are equally likely. Think of a particle at rest that decays into two particles of equal mass. Although we know the two-particle wave function exactly, we don't know anything about the individual particles: we are dealing with an entangled wave function! (Note how a probabilistic theory that conserves momentum forces entanglement on us!)

How does our two-particle wave function transform under $\operatorname{SU}(2)$? We know that a single-particle wave function transforms like $\psi^{\prime}(\vec{x})=\psi\left(R^{-1} \vec{x}\right)$, where R is the 3D rotation matrix. A product wave function of two particles thus transforms like $\tilde{\psi}^{\prime}\left(\vec{x}_{a}, \vec{x}_{b}\right)=\psi_{a}\left(R^{-1} \vec{x}_{a}\right) \cdot \psi_{b}\left(R^{-1} \vec{x}_{b}\right)$. We therefore expect a general two-particle wave function to transform like $\tilde{\psi}^{\prime}\left(\vec{x}_{a}, \vec{x}_{b}\right)=\tilde{\psi}\left(R^{-1} \vec{x}_{a}, R^{-1} \vec{x}_{b}\right)$. Splitting off the transformation from the wave function, we can write $\widetilde{U}=\cdot\left(R^{-1} \cdot, R^{-1} \cdot\right)$, as shown in the lower branch of the diagram. This makes intuitive sense: we simply rotate the position coordinates of both particles in the same way.

What are the basis generators of this representation? A rotation about the z-axis by the angle θ_{z} can be written explicitly as

$$
\widetilde{U}\left(\theta_{z}\right) \tilde{\psi}\left(\vec{x}_{a}, \vec{x}_{b}\right)=\tilde{\psi}\left(\left[\begin{array}{c}
x_{1 a} \cos \theta_{z}+x_{2 a} \sin \theta_{z} \\
-x_{1 a} \sin \theta_{z}+x_{2 a} \cos \theta_{z} \\
x_{3 a}
\end{array}\right],\left[\begin{array}{c}
x_{1 b} \cos \theta_{z}+x_{2 b} \sin \theta_{z} \\
-x_{1 b} \sin \theta_{z}+x_{2 b} \cos \theta_{z} \\
x_{3 b}
\end{array}\right]\right) .
$$

Taking the derivative with respect to θ_{z}, setting θ_{z} to zero, and multiplying by i yields the generator \tilde{J}_{z} acting on the wave function:

$$
\tilde{J}_{z} \tilde{\psi}\left(\vec{x}_{a}, \vec{x}_{b}\right)=i\left(\frac{\partial \tilde{\psi}}{\partial x_{1 a}} \cdot x_{2 a}+\frac{\partial \tilde{\psi}}{\partial x_{2 a}} \cdot\left(-x_{1 a}\right)+\frac{\partial \tilde{\psi}}{\partial x_{1 b}} \cdot x_{2 b}+\frac{\partial \tilde{\psi}}{\partial x_{2 b}} \cdot\left(-x_{1 b}\right)\right) .
$$

Splitting off the operator from the wave function, we get the basis generator

$$
\tilde{J}_{z}=-i\left(x_{1 a} \frac{\partial}{\partial x_{2 a}}-x_{2 a} \frac{\partial}{\partial x_{1 a}}+x_{1 b} \frac{\partial}{\partial x_{2 b}}-x_{2 b} \frac{\partial}{\partial x_{1 b}}\right)=-i\left(\left[\vec{x}_{a} \times \vec{\nabla}_{a}\right]_{z}+\left[\vec{x}_{b} \times \vec{\nabla}_{b}\right]_{z}\right),
$$

where the second form uses the z components of two different cross products. The other two basis generators can be found in the same way and are just the x and y components of the same cross products (see the diagram). In quantum mechanics, these generators correspond to the observables for the combined orbital angular momentum of the two-particle system. Each operator has two parts, which we can associate with the angular momenta of particles a and b.

