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3.17 SU(2): Representations on Symmetric and Antisymmetric Rank-2 Spinors 

In the previous example we found a useful basis for our 4-dimensional representation space. Now 

reverting from 4D vectors back to rank-2 spinors, this basis is:	Ψ�,� = �
√� 	 0 1−1 0,  Ψ�,�� = 	1 00 0,  

Ψ�,� = �
√� 	0 11 0,  Ψ�,�� = 	0 00 1. We realized with the help of the Casimir operator that this 4-

dimensional representation of SU(2) breaks up into a 1-dimensional and a 3-dimensional irreducible 

representation. In the following, we use a different approach to do the same thing. 

Any rank-2 tensor can be written as the sum of a symmetric and an antisymmetric part. For the case of a 

rank-2 spinor, we have ���� ������ ���� =
�
� � 2��� ��� + ������ + ��� 2��� � + �

� � 0 ��� − ������ −��� 0 �, 

where the first matrix on the right-hand side is symmetric and the second one is antisymmetric. Note 

that the symmetric matrix has three independent components while the antisymmetric matrix has only 

one. Now, it turns out that any transformation of the form �′ = ����maps a symmetric matrix � to a 

symmetric matrix	�′ and an antisymmetric matrix to an antisymmetric matrix (� does not even have to 

be unitary). The two types of matrices don’t mix! Thus, our rank-2 spinor representation must break up 

into a 3-dimensional (symmetric) and a 1-dimensional (antisymmetric) representation. 

It won’t come as a surprise that the two representations are just slightly disguised versions of the 1- and 

3-dimensional representations that we discussed earlier. The antisymmetric representation is shown in 

the lower branch of the diagram. If it behaves like the trivial (1-dimensional) representation, then any 

generator acting on an antisymmetric rank-2 spinor must result in zero, corresponding to no change (= 

identity transformation). Picking the generator �� = �
� 	1 00 −1 and acting with it on the antisymmetric 

rank-2 spinor �� = �	Ψ�,� = �
√� 	 0 �−� 0, where � is a complex coefficient, yields ��� = ���� + ����� =

� = cos  !� −"sin  !�
−"sin  !� cos  !�

cos  %� −sin  %�
sin %� cos  %�

exp −"  )� 0
0 exp "  )�

*�+�, unitary (�, = ���), determinant=1

3 parameters: -. , -/ , -�Lie Group SU(2)

Topology:

3-sphere (01) *�+�, unitary (�, = ���), determinant=1

3 parameters: -., -/, -�

⊂ *�+�: *�⨂*�

*�+�, Hermitian (�, = �), trace=0

3D basis (Pauli):

�. = 1
2 0 11 0 = 5.2 ,		�/= 1

2 0 −"" 0 = 5/
2 ,		��= 1

2 1 00 −1 = 5�2
�., �/ = "��,		 �/ , �� = "�., ��, �. = "�/

Lie Algebra su(2)

3-dimensional

linear space

with 6·,·8

symmetric

rank-2 spinor

representation

antisymmetric

rank-2 spinor

representation

linearize

at 9

9

exponential

map

� = " :�:-; <�
� = 9�=>

⊂ *�+�: *�⨂*�*�+�, Hermitian (�, = �), trace=0

3D basis (Pauli):

�

�

�

�

Basis:
1 00 0 ,  

�
�
0 11 0 ,  

0 00 1

��� = �����

��� =��� + ����

� = cos  !� −"sin  !�
−"sin !� cos  !�

cos  %� −sin  %�
sin %� cos  %�

exp−"  )� 0
0 exp "  )�

0 ?−? 0
��

��′

��

��′�. = 1
2 0 11 0 = 5.2 ,		�/= 1

2 0 −"" 0 = 5/
2 ,		��= 1

2 1 00 −1 = 5�2
�., �/ = "��,		 �/ , �� = "�., ��, �. = "�/

symmetric

rank-2 spinor

representation

antisymmetric

rank-2 spinor

representation

�

�′

�

�′

⊂ *�+�: *�⨂*��� = ����
@ AA B

⊂ *�+�: *�⨂*�

Basis:
1
2

0 1−1 0

�� =�� + ���

Basis:
1 00 0 ,  

�
�
0 11 0 ,  

0 00 1

@ AA B

0 ?−? 0
Basis:

1
2

0 1−1 0



E. Sackinger: Groups in Physics (Draft Version 0.2, February 4, 2023) 

 

54 

 

�
� 	1 00 −1 �

√� 	 0 �−� 0 + �
√� 	 0 �−� 0 �� 	1 00 −1 = 	0 00 0, as expected. Acting with �. or �/ on �� also 

yields zero. 

Next, let’s act with a generator on a symmetric rank-2 spinor (see the upper branch of the diagram). 

Such a spinor can be written as � = ��Ψ�,�� + ��Ψ�,� + �1Ψ�,�� = C �� ��/√2��/√2 �1 E, where ��, ��, �1 

are three complex coefficients. Acting with �� on this rank-2 spinor yields �� = ��� + ���� = ��� 00 −�1�. 

Comparing with �� = C ��� ���/√2���/√2 �1� E, we find that ��� = ��, ��� = 0, and �1� = −�1. Thus, the 

unpacked generator is exactly the 3×3 matrix we had before when rotating spin-1 particles about the � 

axis. Unpacking the remaining two generators confirms that this representation is equivalent to the 3-

dimensional representation that we discussed earlier. 

As we have seen, the tensor product of two copies of the 2-dimensional representation of SU(2) breaks 

up into a 3-dimensional and a 1-dimensional irreducible representation. This fact can be expressed as a 

formula: F⨂F = G⨁I, where bold numbers indicate the dimension of the representation, ⨂ stands for 

the tensor product, and ⨁ stands for the direct sum of two representations. The direct sum of two 

vector spaces consists of the Cartesian product of the sets together with the operations of vector 

addition and scalar multiplication. The dimension of the resulting vector space is the sum of the two 

constituent spaces (in contrast to the tensor product for which it is the product). 

To construct new irreducible representations from old ones, we can take the tensor product of two 

known representations and break the result up into irreducible representations. We already know that 

F⨂F = G⨁I. Similarly, it can be shown that F⨂G = J⨁F, F⨂J = K⨁G, and G⨂G = K⨁G⨁I. The 

total number of dimensions on both sides of the equal sign is always the same: 2 × 3 = 6 = 4 + 2, 

2 × 4 = 8 = 5 + 3, and 3 × 3 = 9 = 5 + 3 + 1. The process of breaking up tensor-product 

representations into irreducibles is known as Clebsch-Gordan decomposition [GTNut, Ch. IV.3]. 

We can also take the tensor product of more than two representations, resulting in a representation on 

higher-rank tensors. Specifically, we can take the tensor product of R copies of the 2-dimensional 

(spinor) representation to get a representation on rank-R spinors. Then, we break this 2S-dimensional 

representation into irreducibles. For example, for R = 2: F⨂F = G⨁I, as we already know, for R = 3: 

F⨂F⨂F = F⨂(G⨁I) = (F⨂G)⨁(F⨂I) = J⨁F⨁F, and for R = 4: F⨂F⨂F⨂F = F⨂(J⨁F⨁F) =

(F⨂J)⨁(F⨂F)⨁(F⨂F) = K⨁G⨁G⨁G⨁I⨁I. 

Interestingly, we can obtain all irreducible representations of SU(2) in this way: as we step through R =
2, 3, 4,…, we get a new (R + 1)-dimensional irreducible representation at every step! For example, we 

get G from F⨂F, we get J from F⨂F⨂F, and we get K from F⨂F⨂F⨂F. It turns out that this new 

irreducible representation is furnished by the totally symmetric rank-R spinors [GTNut, Ch. IV.5; RtR, Ch. 

22.8]. Thus, the W-dimensional representation of SU(2) can act not only on W-dimensional vectors but 

also on totally symmetric rank-(W − 1) spinors (e.g., the 3-dimensional representation can also act on 

symmetric rank-2 spinors). As a consequence, the quantum state of a particle with total spin X can be 

described not only by a vector with 2X + 1 components but also by a totally symmetric spinor of rank 2X. 
This new point of view leads to an interesting geometric interpretation of spin states known as the 

Majorana picture (see [RtR, Ch. 22.10] for details). 


