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3.20 SU(2): Representations on (Anti)Symmetric Functions; Bosons and Fermions 

The function from the previous example, �(��� , ���), can be decomposed into a part that is symmetric 

with respect to an exchange of its arguments ��� and ��� and a part that is antisymmetric: �(��� , ���) =

�
(��� , ���) + ��(���, ���), where �
(��� , ���) = �
(��� , ���) and ��(���, ���) = −��(��� , ���). The first part 

is obtained by symmetrizing and the second part by antisymmetrizing the original function: 

�
(��� , ���) =
�

�
[�(��� , ���) + �(��� , ���)] and ��(���, ���) =

�

�
[�(��� , ���) − �(��� , ���)]. Any transformation 

of the form �′(��� , ���) = �(���� , ����) maps symmetric functions �
 to symmetric functions	�

�  and 

antisymmetric functions �� to antisymmetric functions ��
�  (� does not even have to be a rotation). 

Analogous to what we have seen for rank-2 spinors, the symmetric and the antisymmetric parts don’t 

mix! Thus, our representation breaks up into two sub-representations (see the diagram, where we 

named the symmetric and antisymmetric functions � and ��, respectively, to reduce clutter). In contrast 

to the rank-2 spinors, where the sub-representations were one and three dimensional and irreducible, 

here the sub-representations are infinite dimensional and reducible. 

What is the quantum-mechanical interpretation of symmetric and antisymmetric wave functions? Both 

types of wave functions can be decomposed into basis functions that represent particle pairs with a joint 

orbital angular momentum given by � = 0, 1, 2, … and � = 0,±1,±2,…± �. The restriction on the 

wavefunction is not related to orbital angular momentum but to the type of particles: our new 

representations describe systems of two identical (= indistinguishable) particles! The defining property 

of two identical particles is that we can exchange them without any observable effects. Indeed, the 

observable probability-density function does not change under such an exchange: |�
(��� , ���)|
� =

|�
(��� , ���)|
� as well as |��(��� , ���)|

� = |��(��� , ���)|
�. Surprisingly, we found two types of wave 

functions for which this is true and thus there are two types of identical particles! Those with a 

symmetric wave function are called bosons and those with an antisymmetric wave function are called 

fermions. Rotations (as well as many other transformations) always map bosons to bosons and fermions 

to fermions. 
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Some symmetric (bosonic) two-particle wave functions can be written as a product of two identical 

single-particle wave functions: �
���� , ���� 	 >�����>�����. Such a product wave function can be thought 

of as a field >���� living in physical space and, when generalized to many identical bosons, behaves like a 

classical field. This is the origin of large-scale quantum effects occurring, for example, for laser light, 

superfluids, and superconductor. A more general symmetric two-particle wave function can be written 

as the symmetrized product of two different single-particle wave functions �
(��� , ���) = >(���)?(���) +

?(���)>(���). This is no longer a product wave function and thus describes two entangled bosons. 

However, the entanglement is minimal in the sense that the wave function can be split into two 

subfunctions. The most general symmetric two-particle wave function can be written as �
(���, ���) =

∑ [>9(���)?9(���) + ?9(���)>9(���)]
A
97#  and is non-splitting (for ' > 1) [RtR, Ch. 23.8]. 

An antisymmetric (fermionic) two-particle wave function can never be written as a product of two 

single-particle wave function. This is the origin of the Pauli exclusion principle. Some antisymmetric two-

particle wave functions can be written as ��(���, ���) = >(���)?(���) − ?(���)>(���), that is, the 

antisymmetrized product of two different single-particle wave functions. A general antisymmetric two-

particle wave function can be written as ��(��� , ���) = ∑ [>9(���)?9(���) − ?9(���)>9(���)]
A
97# . Thus, 

fermions are always entangled. There is minimum amount of entanglement (given by the first form) that 

cannot be avoided. In particular, all electrons in the universe are entangled with one other: we cannot 

really describe individual electrons by single-particle wave functions! 

So, what do we mean then when we say that one electron in an atom occupies the 1s orbital and 

another one a 2p orbital? This is a sloppy way of speaking! What we really mean is that the wave 

function for all the electrons in the atom is the antisymmetrized product of a wave function for the 1s 

orbital, a wave function for the 2p orbital, etc. Similarly, when we say that no two electrons can occupy 

the same state, what we really mean is that a two-particle wave function that is the antisymmetrized 

product of two identical single-particle wave functions is zero, that is, it can’t exist. 

For another perspective on identical particles, let’s assume that our particles can only be either at 

location 1 or location 2 [RtR, Ch. 23.7]. Then, the single-particle wave function becomes a two-

component vector, �9 where 1 = 1, 2, and the two-particle wave function becomes a 2×2 tensor, �9C 

where 1, � = 1, 2. The tensor component �#�, for example, is the amplitude for particle D to be at 

location 1 and particle E to be at location 2. Now, if the two particles are identical, |�9C|
� = |�C9|

� must 

hold and when further requiring that two successive particle exchanges leave the state unchanged, we 

get either �9C = �C9 (symmetric state for bosons) or �9C = −�C9 (antisymmetric state for fermions). 

Some of these symmetric states are product states of the form �9C = >9>C, which means that both 

bosons are in the same state >. In other words, either the bosons are both at location 1 or they are both 

at location 2 or they are in the same superposition of being at locations 1 and 2. A more general 

symmetric state is of the form �9C = >9?C + ?9>C, which is an entangled state. For example, one boson 

is at location 1 and the other one at location 2, but we don’t know which one is where. Antisymmetric 

states can never be product states. Some antisymmetric states are of the form �9C = >9?C − ?9>C, 

which is again an entangled state. For example, one fermion is at location 1 and the other one at 

location 2, but we don’t know which one is where.  


