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3.18 SU(2): Representation on Rank-3 Spinors; Index Notation 

Having discussed the tensor-product representation �⨂�, we now turn to the 8-dimensional  �⨂�⨂� 

representation of SU(2). In quantum mechanics, this representation describes transformations of the 

state of three (possibly entangled) spin-½ particles. Now, the elements of the representation space are 

rank-3 spinors, which we can think of as 2×2×2 cubic number schemes. How do we deal with these 

unwieldy objects? 

One way to deal with rank-3 tensors is to write them as column vectors where each component is a 

matrix. A better way, which generalizes to any rank, is to introduce the index notation along with the 

Einstein summation convention. How does this work? We used to write the product of a matrix � with a 

vector � as ��. Now, we write the matrix as ���, the vector as ��, and their product as �����, where a 

summation over the repeated index � is implied. The transformation of a matrix �, which we used to 

write as �′ = ����, we now write as ���
� = �������

� = �������, where summation over the two 

repeated indices, � and �, is implied. The identity matrix, which we used to write as �, we now write as 

the Kronecker delta ���. With this new notation in hand, we can write a rank-3 tensor as a symbol with 

three indices: ����! 

The upper branch of the diagram shows the representation on rank-2 spinors, which we are already 

familiar with, but now rewritten using the index notation. The Lie-group action �′ = ���� becomes 

���
� = ������� (as already mentioned) and the Lie-algebra action �′ = �� + ��� becomes ���

� =

���� + ����
� = ���� + ����. To write down the basis generators in our new notation, we need to 

make a small change. We used to label the basis generators as ��, ��, and	��, but now the �, �, � indices 

are in conflict with the new indices for labeling the components. To resolve this issue, we move the 

�, �, � indices “upstairs” and put them in parenthesis to avoid confusion with an exponent. In our new 

notation, the basis generators are written as ���
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Now that we are getting used to the index notation, let’s tackle the rank-3 spinor ���� (see the lower 

branch of the diagram)! Analogous to what we did for the rank-2 spinor, we write the rank-3 spinor as a 

tensor product of three spinors. Then, we use our knowledge of how spinors transform to infer how the 

rank-3 spinor transforms. Writing the rank-3 spinor as the tensor product of three spinors, ���� =
����E�, and then transforming the individual spinors yields ����� = ����������DED =
�������D���ED = �������D��D, which is a straightforward generalization of the formula for rank-

2 spinors. To find out how the Lie-algebra elements act on rank-3 spinors, we take the derivative of the 

transformation (using the product rule) and evaluate the result at the identity element, which yields 

����� = F�������D + �������D + �������DG��D. We can simplify this expression by eliminating the 

Kronecker deltas and renaming spinor indices as necessary: ����� = ����� + ����� + �����. 

Compared to the formula for rank-2 spinors, we now have three instead of two terms. 

In quantum mechanics, the generator given by ����� + ����� + ����� is the observable for the 

combined spin of a system of three spin-½ particles. Whereas for the 2-particle system the eigenvalues 

were in the set {±J
K ± J

K} = {'1, 0, +1}, they are now in the set {±J
K ± J

K ± J
K} = {'M

K, 'J
K, +J

K, +M
K}. In other 

words, the possible measurement outcomes for the combined spin of the 3-particle system (along a 

given axis) are '3/2, '1/2, +1/2, or +3/2. 

When we discussed rank-2 tensors we distinguished between symmetric and antisymmetric tensors. For 

higher-rank tensors, there are more possibilities! Rank-3 tensors can be symmetric (or antisymmetric) 

with respect to the first two indices, the last two indices, the first and last index, or all three indices. The 

last possibility is known as totally symmetric (or antisymmetric). Whereas a general rank-3 spinor has 

eight independent components (2×2×2), one that is symmetric with respect to two indices has only six, 

and one that is totally symmetric has only four. (Remember that totally symmetric rank-3 spinors furnish 

the 4-dimensional representation of SU(2)). A rank-3 spinor that is antisymmetric with respect to two 

indices has only two independent components and one that is totally antisymmetric must be zero. For a 

totally antisymmetric tensor to be nonzero, its dimension must be equal to or greater than its rank. For 

example, in three dimensions there is a totally antisymmetric rank-3 tensor that is nonzero: the Levi-

Civita symbol P���  (there are Levi-Civita symbols for every dimension = rank). 

With our new index notation in hand, it is now easy to generalize the transformation law to an arbitrary 

rank: a rank-Q tensor has Q indices ����⋯S and transforms like ����..S
� = �������D ⋯�SU��D⋯U. This 

formula makes clear that the transformation acts on each index independently. The indices live in the 

same household but do not talk to each other [GTNut, p. 188]! This is the reason why a tensor that is 

symmetric (or antisymmetric) with respect to a set of indices remains that way after a transformation. 

You may have wondered in the previous example what the difference between the direct sum and the 

direct product is. In either case, the set structure is given by the Cartesian product. The difference is 

whether the algebraic operation on the set is called “sum” (e.g., for vector spaces) or “product” (e.g., for 

groups). We use the symbol 2 for the Cartesian product as well as for the direct product of groups and 

we use the symbol ⨁ for the direct sum of representations and algebras. It is important to realize that 

the tensor product, for which we us the symbol ⨂, is entirely different from the direct product! (See 

https://www.math3ma.com/blog/the-tensor-product-demystified.)  


