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3.2 SU(2): Application to Quantum-Mechanical Spin 

What is the group SU(2) good for? Unitary groups are tailor-made for quantum mechanics! In quantum 

mechanics the state of a system is represented by a complex vector. We will use the symbols � and � 

for the column vectors representing such states (in Dirac notation they would be written as |�� and 

|��). The probability amplitude for one state being in another state is given by the Hermitian inner 

product ��� (in Dirac notation: ⟨�|��). By definition, unitary transformations satisfy ��� = 	 and thus 

preserve the Hermitian inner product: (��)��� = ������ = ���. In particular, unitary 

transformations keep unambiguously distinguishable states for which ��� = 0 as such, thus preserving 

the information contained in the states [TM, Vol. 2]. Therefore, U(n) or SU(n) are exactly what we need 

for transforming quantum states! In the following, we focus on quantum-mechanical spin states, for 

which the three transformation parameters of SU(2) have a concrete geometrical meaning.  

A spin-½ particle, such as an electron, is described by a state vector � with two complex components, a 

so-called spinor. (We assume that the electron’s position is fixed so that we don’t have to worry about 

that part of the state.) The components represent the amplitudes for spin up (spin +½) and spin down 

(spin −½) relative to a given direction in space, usually the 
 axis. Now, it turns out that the elements of 

the defining representation of SU(2) describe exactly how this state transforms under 3D rotation: �′ =

�(��, �� , ��)�, where ��, �� , �� are the angles of rotation about the �, �, 
 axis, respectively. (See [FLP, 

Vol. III, Ch. 6] for more about these transformations.) 

What about a (massive) spin-1 particle, such as a W or Z boson? Its spin state is described by a complex 

3-component vector. Now, the components represent the amplitudes for spin up (spin +1), spin 

horizontal (spin 0), and spin down (spin −1). Remarkably, this state, ��, also transforms under SU(2), but 

this time under its 3-dimensional representation, as shown in the lower branch of the diagram. (See 

[FLP, Vol. III, Ch. 5] for more about these transformations.) In fact, SU(2) can rotate the spin state of any 

(massive) particle, we just need to use the appropriate representation! 
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The elements of the Lie group SU(2) tell us how to transform a spin state under rotation. What about 

the elements of the Lie algebra su(2)? Amazingly, when multiplied by �ℏ, they are the operators for the 

angular-momentum observable! More specifically, the operators for the intrinsic angular momentum or 

spin. Note that ℏ has the units of angular momentum. To keep the notation simple, we will from now on 

work in units for which ℏ = 1. Moreover, physicists like to include a factor � as part of the generator 

(marked in red in the diagram) and then put a �� into the exponent of the exponential map (� × �� = 1) 

and an � into the commutation relations to keep things consistent. After these modifications, the 

generators become Hermitian (rather than anti-Hermitian) and their eigenvalues become real (rather 

than imaginary), as appropriate for observables. Because the generators now represent spin 

observables, we use the letter 3 (instead of D). We say, for example, that the basis generator 3� is the 

operator for the spin along the 
-axis or, more simply, the 
-component of the spin. 

How do we use the operator 3 and the quantum state � to determine the observed value? The 

expectation value for a spin component is given by the “sandwich” formula ⟨3� = ��3�, where 3 is the 

generator matrix for the particular spin component (in Dirac notation: ⟨3� = ⟨�|3|�⟩). The full 

probability distribution is obtained by taking the Hermitian inner products of the state � and all the 

eigenstates (= eigenvectors) �@ of the generator matrix followed by taking the absolute square: E
F@� �
|�@��|�, where 3�@ � F@�@  and � � 1, 2, … labels the eigenstates �@ and eigenvalues F@ of the generator 

(in Dirac notation: E(H) = |⟨H|�⟩|�, where 3|H⟩ � H|H⟩ and the eigenvalues H label the 

corresponding eigenstates |H⟩). The observed spin value is always one of the eigenvalues F@ and occurs 

with probability E
F@�. In particular, the eigenstate � � �@ has the definite spin value F@, that is, E(F@) =

1. The total spin, as opposed to the spin component, determines what representation the generator 

matrix needs to be taken from (e.g., for spin ½ we use the 2-dimensional representation, for spin 1 we 

use the 3-dimensional representation, etc.) 

Note that when generators are interpreted as quantum observables, they must be appropriately 

normalized: The spin-½ generators must have eigenvalues +½ and −½, the spin-1 generators must have 

eigenvalues +1, 0, −1, etc. The basis generators shown in the diagram are normalized in this way. 

We know that no pair of the three basis generators 3�, 3�, and 3� commutes: [3@, 3I] ≠ 0 for � ≠ F. 

Consequently, two basis generators cannot have (all) the eigenvectors in common. This leads to the 

hard-to-swallow fact that only one component of the spin can have a definite value! This is a form of 

Heisenberg’s Uncertainty Principle. While all three spin components have expectation values, only one 

of them can have a definite value. It is conventional to choose 3� for the spin component with the 

definite value. (We can prepare a spin with a definite 3� value by measuring it along the 
 axis.) 

It is a general feature of quantum mechanics that observables, such as spin, momentum, energy, etc., 

can be identified with generators (= Lie-algebra elements). Therefore, every observable is automatically 

associated with a set of transformations (= Lie-group elements). In our example, spin is associated with 

SU(2) transformations, which correspond to 3D rotations. What is the significance of these 

transformations? If the transformations associated with a particular observable leave the law of time 

evolution unchanged (= symmetry transformations), then the observable is time independent (= 

conserved)! For example, full 3D rotational symmetry implies the conservation of angular momentum 

along all axes. Specifically, all three expectation values ⟨3�� = �(K)�3��(K), ⟨3�� = �(K)�3��(K), and 

⟨3�� = �(K)�3��(K) will be conserved. (See the Appendix “Symmetry and Conservation in Quantum 

Mechanics” for more on this topic.)  


