3. Rotation in Our Three-Dimensional Space and Angular Momentum

3.1 SU(2): The Special Unitary Group of Degree Two

The Lie group $\operatorname{SU}(2)$ is a good example to start with. It is rich enough to illustrate most features of Lie groups, yet simple enough to serve as a first example. Moreover, it is one of the most important groups in physics! The group, or rather its defining representation, consists of all 2×2 unitary matrices U with determinant one. The S in $\mathrm{SU}(2)$ stands for special, indicating that $\operatorname{det}(U)=U_{11} U_{22}-U_{12} U_{21}=1$ and the U stands for unitary, meaning that the complex matrix U satisfies $U^{\dagger} U=I$, where the dagger \dagger indicates the Hermitian conjugate ($=$ transpose and complex conjugate) and I is the 2×2 identity matrix.

How many parameters do we need to describe a general $\operatorname{SU}(2)$ matrix? For a general complex 2×2 matrix we need four complex or eight real parameters. It turns out that the constraints $U^{\dagger} U=I$ and $\operatorname{det}(U)=$ 1 reduce the number of free parameters from eight to three. In other words, the group $\mathrm{SU}(2)$ is a 3dimensional manifold. As we will see later, it has the shape of a 3 -sphere.

There are many ways of parametrizing an $\mathrm{SU}(2)$ matrix. One possibility is shown in the diagram (upper branch). The matrix $U\left(\theta_{x}, \theta_{y}, \theta_{z}\right)$ is written as a product of three matrices, where each one depends on only a single parameter: $U_{x}\left(\theta_{x}\right) \cdot U_{y}\left(\theta_{y}\right) \cdot U_{z}\left(\theta_{z}\right)$. If all three parameters are set to zero, the overall matrix becomes the identity matrix: $U(0,0,0)=I$. The transformation matrix U acts on complex 2component vectors like $z^{\prime}=U z$, where $z, z^{\prime} \in \mathbb{C}^{2}$ are elements of the representation space.

The Lie algebra that goes with the Lie group $\mathrm{SU}(2)$ is denoted $\operatorname{su}(2)$. To find the k-th basis generator, we take the derivative of the transformation matrix $U\left(\theta_{x}, \theta_{y}, \theta_{z}\right)$ with respect to the k-th parameter, θ_{k}, where $k=x, y, z$, and evaluate the result for $\theta_{k}=0$. The resulting three 2×2 matrices T_{x}, T_{y}, T_{z} are shown in the diagram. These matrices are related to the three Pauli matrices $\sigma_{x}, \sigma_{y}, \sigma_{z}$ as follows:
$T_{k}=-i \sigma_{k} / 2$ [PfS, Ch. 3.4.3]. A general element X of the Lie algebra is a linear combination of the three basis generators, $X=\alpha T_{x}+\beta T_{y}+\gamma T_{z}$, where α, β, γ are real coefficients.

The Lie bracket of two generators is given by the matrix commutator: $[X, Y]=X Y-Y X$. Evaluating the commutation relations of the basis generators yields $\left[T_{x}, T_{y}\right]=T_{x} T_{y}-T_{y} T_{x}=T_{z},\left[T_{y}, T_{z}\right]=T_{y} T_{z}-$ $T_{z} T_{y}=T_{x}$, and $\left[T_{z}, T_{x}\right]=T_{z} T_{x}-T_{x} T_{z}=T_{y}$. Note that in this algebra, no pair of (distinct) basis generators commutes: $\left[T_{i}, T_{j}\right] \neq 0$ for $i \neq j$. The commutator of any two basis generators can always be expressed as a linear combination of the basis generators, for example, $\left[T_{z}, T_{y}\right]=-1 T_{x}+0 T_{y}+0 T_{z}$. All nine of these relations can be written compactly as $\left[T_{i}, T_{j}\right]=\sum_{k=1}^{3} \varepsilon_{i j k} T_{k}$, where the T_{x}, T_{y}, T_{z} are now numbered as T_{1}, T_{2}, T_{3} and $\varepsilon_{i j k}$ is the 3 -dimensional Levi-Civita symbol defined as $\varepsilon_{123}=\varepsilon_{231}=$ $\varepsilon_{312}=+1$ and $\varepsilon_{321}=\varepsilon_{132}=\varepsilon_{213}=-1$, else $\varepsilon_{i j k}=0$ [PfS, Ch. B.5.5]. The coefficients $\varepsilon_{i j k}$ in the above commutation relations are the structure constants of $\mathrm{su}(2)$.

The matrices X that make up the su(2) algebra are of a particular form that is dictated by the form of the matrices U that make up the $S U(2)$ group. From the fact that the $S U(2)$ matrices are unitary, $U^{\dagger} U=I$, it can be shown that the su(2) matrices must be anti-Hermitian, $X^{\dagger}=-X$, and from the fact that the $\mathrm{SU}(2)$ matrices have determinant one, $\operatorname{det}(U)=U_{11} U_{22}-U_{12} U_{21}=1$, it can be shown that the su(2) matrices must have trace zero, $\operatorname{tr}(X)=X_{11}+X_{22}=0$ (see [GTNut, Ch. IV.4; PfS, Ch. 3.4.3]). The matrices X are elements of a 3-dimensional real vector space; only real combinations of the three (complex) basis generators are allowed to ensure that the result remains anti-Hermitian.

To get from the Lie algebra back to the Lie group, we use the exponential map. The matrix exponential $\exp \left(T_{x} \theta_{x}\right)$ yields the first matrix $U_{x}\left(\theta_{x}\right)$ shown in the diagram. (The Wolfram Alpha command matrixexp $\left(\{\{0,-i\},\{-i, 0\}\}^{*} x / 2\right)$ can be used to check this.) Similarly, the basis generators T_{y} and T_{z} produce the matrices $U_{y}\left(\theta_{y}\right)$ and $U_{z}\left(\theta_{z}\right)$. Putting it all together, we have $U\left(\theta_{x}, \theta_{y}, \theta_{z}\right)=$ $\exp \left(T_{x} \theta_{x}\right) \cdot \exp \left(T_{y} \theta_{y}\right) \cdot \exp \left(T_{z} \theta_{z}\right)$. Incidentally, the parameters $\theta_{x}, \theta_{y}, \theta_{z}$ in this exponential expression agree with those in our initial matrix expression.

Now we can see how to construct the transformation matrix U shown in the diagram: First, from the defining conditions of the transformation matrix (Lie-group element) derive the defining conditions of the generator (Lie-algebra element). Then, from the latter conditions find a basis for the generators. Finally, use the exponential map to determine the transformation matrix.

Remarkably, $\operatorname{SU}(2)$ has not only the 2-dimensional representation we discussed so far but has also a 3dimensional one! The lower branch of the diagram shows the corresponding 3×3 transformation matrix $\widetilde{U}\left(\theta_{x}, \theta_{y}, \theta_{z}\right)$. It depends on the same three parameters as the 2-dimensional representation but acts on complex 3-vectors instead of 2-vectors. Taking the derivatives, we find the corresponding three basis generators in the Lie algebra, $\widetilde{T}_{x}, \widetilde{T}_{y}, \widetilde{T}_{z}$, which are also 3×3 matrices. The exponential map takes us back to the group matrices. Evaluating the Lie brackets, we find the exact same commutation relations (and thus the same structure constants) as for the 2-dimensional representation. Both are representations of the same group and the same algebra! It turns out that $\operatorname{SU}(2)$ has representations in all dimensions, from one to infinity. Later, we will see how to construct them systematically.

Note that for the defining representation, the transformations $U(0,0,0)$ and $U(0,0,2 \pi)$ are different, namely I and $-I$, but for the 3-dimensional representation, the transformations $\widetilde{U}(0,0,0)$ and $\widetilde{U}(0,0,2 \pi)$ are the same, namely I. Since the map from the abstract group to the defining representation is necessarily one-to-one, the map to the 3-dimensional representation must be many-to-one (in this case two-to-one). That's ok, a representation does not have to be one-to-one, it only needs to preserve the algebraic structure, that is, it must be a homomorphism.

