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3. Rotation in Our Three-Dimensional Space and Angular Momentum 

3.1 SU(2): The Special Unitary Group of Degree Two 

 
The Lie group SU(2) is a good example to start with. It is rich enough to illustrate most features of Lie 

groups, yet simple enough to serve as a first example. Moreover, it is one of the most important groups 

in physics! The group, or rather its defining representation, consists of all 2×2 unitary matrices � with 

determinant one. The S in SU(2) stands for special, indicating that det(�) = ����		 − ��	�	� = 1 and 

the U stands for unitary, meaning that the complex matrix � satisfies ��� = , where the dagger † 

indicates the Hermitian conjugate (= transpose and complex conjugate) and  is the 2×2 identity matrix. 

How many parameters do we need to describe a general SU(2) matrix? For a general complex 2×2 matrix 

we need four complex or eight real parameters. It turns out that the constraints ��� =  and det(�) =
1 reduce the number of free parameters from eight to three. In other words, the group SU(2) is a 3-

dimensional manifold. As we will see later, it has the shape of a 3-sphere. 

There are many ways of parametrizing an SU(2) matrix. One possibility is shown in the diagram (upper 

branch). The matrix �(��, �� , ��) is written as a product of three matrices, where each one depends on 

only a single parameter: ��(��) ∙ ������ ∙ ��(��). If all three parameters are set to zero, the overall 

matrix becomes the identity matrix: �(0, 0, 0) = . The transformation matrix � acts on complex 2-

component vectors like �′ = ��, where �, �′ ∈ ℂ	 are elements of the representation space. 

The Lie algebra that goes with the Lie group SU(2) is denoted su(2). To find the �-th basis generator, we 

take the derivative of the transformation matrix �(��, �� , ��) with respect to the �-th parameter, ��, 

where � = �, �, �, and evaluate the result for �� = 0. The resulting three 2×2 matrices  � ,  � ,  � are 

shown in the diagram. These matrices are related to the three Pauli matrices !�, !� , !� as follows:    

 � = −"!�/2 [PfS, Ch. 3.4.3]. A general element % of the Lie algebra is a linear combination of the three 

basis generators, % = & � + ( � + ) �, where &, (, ) are real coefficients. 
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The Lie bracket of two generators is given by the matrix commutator: H%, KJ = %K − K%. Evaluating the 

commutation relations of the basis generators yields H � ,  �J =  � � −  � � =  �,  H � ,  �J =  � � − � � =  �, and H �,  �J =  � � −  � � =  �. Note that in this algebra, no pair of (distinct) basis 

generators commutes: H L,  MJ ≠ 0 for " ≠ O. The commutator of any two basis generators can always be 

expressed as a linear combination of the basis generators, for example, H �,  �J = −1	 � + 0	 � + 0	 �. 

All nine of these relations can be written compactly as H L,  MJ = ∑ QLM� �8�D� , where the  �,  �,  � are 

now numbered as  �,  	,  8 and QLM�  is the 3-dimensional Levi-Civita symbol defined as Q�	8 = Q	8� =
Q8�	 = +1 and Q8	� = Q�8	 = Q	�8 = −1, else QLM� = 0 [PfS, Ch. B.5.5]. The coefficients QLM�  in the 

above commutation relations are the structure constants of su(2). 

The matrices % that make up the su(2) algebra are of a particular form that is dictated by the form of the 

matrices � that make up the SU(2) group. From the fact that the SU(2) matrices are unitary, ��� = , it 
can be shown that the su(2) matrices must be anti-Hermitian, %� = −%, and from the fact that the 

SU(2) matrices have determinant one, det(�) = ����		 − ��	�	� = 1, it can be shown that the su(2) 

matrices must have trace zero, tr(%) = %�� + %		 = 0 (see [GTNut, Ch. IV.4; PfS, Ch. 3.4.3]). The 

matrices % are elements of a 3-dimensional real vector space; only real combinations of the three 

(complex) basis generators are allowed to ensure that the result remains anti-Hermitian. 

To get from the Lie algebra back to the Lie group, we use the exponential map. The matrix exponential 

exp(  ���) yields the first matrix ��(��) shown in the diagram. (The Wolfram Alpha command 

matrixexp({{0,-i},{-i,0}}*x/2) can be used to check this.) Similarly, the basis generators  � 

and  � produce the matrices ��(��) and ��(��). Putting it all together, we have �(�� , �� , ��) =
exp(  ���) ∙ exp(  ���) ∙ exp(  ���). Incidentally, the parameters �� , ��, �� in this exponential 

expression agree with those in our initial matrix expression. 

Now we can see how to construct the transformation matrix � shown in the diagram: First, from the 

defining conditions of the transformation matrix (Lie-group element) derive the defining conditions of 

the generator (Lie-algebra element). Then, from the latter conditions find a basis for the generators. 

Finally, use the exponential map to determine the transformation matrix. 

Remarkably, SU(2) has not only the 2-dimensional representation we discussed so far but has also a 3-

dimensional one! The lower branch of the diagram shows the corresponding 3×3 transformation matrix 

�:(��, �� , ��). It depends on the same three parameters as the 2-dimensional representation but acts on 

complex 3-vectors instead of 2-vectors. Taking the derivatives, we find the corresponding three basis 

generators in the Lie algebra,  G� ,  G� ,  G�,	which are also 3×3 matrices. The exponential map takes us back 

to the group matrices. Evaluating the Lie brackets, we find the exact same commutation relations (and 

thus the same structure constants) as for the 2-dimensional representation. Both are representations of 

the same group and the same algebra! It turns out that SU(2) has representations in all dimensions, 

from one to infinity. Later, we will see how to construct them systematically. 

Note that for the defining representation, the transformations �(0, 0, 0) and �(0, 0, 2S) are different, 

namely  and −, but for the 3-dimensional representation, the transformations  �:(0, 0, 0) and 

�:(0, 0, 2S) are the same, namely . Since the map from the abstract group to the defining 

representation is necessarily one-to-one, the map to the 3-dimensional representation must be many-

to-one (in this case two-to-one). That’s ok, a representation does not have to be one-to-one, it only 

needs to preserve the algebraic structure, that is, it must be a homomorphism. 


