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5.9 Spin(4): The (½, ½) Representation; 4D Rotation with Two SU(2) Matrices 

Having practiced with the (1, 1) representation, we are now ready to tackle the important (½, ½) 

representation. We construct it by taking the tensor product (½, 0) ⨂ (0, ½), which acts on complex 2×2 

matrices known as rank-2 spinors (see the lower branch of the diagram). Amazingly, this representation 

is equivalent to the (complexified) defining representation of Spin(4), which is shown again for reference 

in the upper branch of the diagram! At first glance, this seems unbelievable: how can a representation 

acting on exotic rank-2 spinors be equivalent to one acting on good old-fashioned 4D vectors? At the 

end of this example, it will make sense! 

How does the rank-2 spinor � transform under the (½, ½) representation? Consider the outer product of 

the spinor �� from the (½, 0) representation space and the spinor �� from the (0, ½) representation 

space: � = �����. Knowing that the (½, 0) representation acts like ��� = ��(
��, 
��, 
��)�� and that the  

(0, ½) representation acts like ��� = ��(
��, 
��, 
��)��, we conclude that � transforms like �′ = ������� =
����(����)� = ���������� = ������. Now, it turns out that to get a direct correspondence between 

the rank-2 spinor and the vector representations (without the need for a similarity transformation), we 

need to pick the (equivalent) complex-conjugate representation of (0, ½). Thus, given the ��  and �� 

matrices shown in the diagram, the transformation is �′ = ������. In conclusion, each element of 

Spin(4) maps to two SU(2) matrices, ��  and ��, which act jointly on the rank-2 spinor � and collectively 

depend on six parameters (see the lower branch of the diagram). 

To find the six basis generators and their action on the rank-2 spinor �, we take the derivative of the 

transformation �′ = ������ with respect to the six parameters and evaluate the result at 
�� = 
�� = 0. 

For the three parameters 
�� we find �′ = ��� and for the three parameters 
�� we find �′ = ����, where 

�� = −���/2. Thus, the action of an arbitrary generator is �′ = ��� + ����, where �� and �� are two 2×2 

matrices in the basis ��, ��, ��. In conclusion, each element of so(4) maps to two (anti-Hermitian) 2×2 

matrices, �� and ��, which act jointly on the rank-2 spinor � (see the lower branch of the diagram). 
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The (½, ½) representation acts on complex 2×2 matrices and thus is four dimensional if the matrices are 

considered elements of a complex vector space (in which we use complex numbers to combine vectors). 

However, if the matrices are considered elements of a real vector space (in which we use only real 

numbers to combine vectors), the same representation is eight dimensional. In the latter case, the 8-

dimensional representation is reducible into two 4-dimensional ones. Specifically, the decomposition of 

a general complex 2×2 matrix 

� + �̃ = C&3 − �&" −&* − �&A&* − �&A &3 + �&" D + � C&% − �&E −&F − �&G&F − �&G &% + �&E D, 

where the &� are real numbers, has the property that the transformation �′ = ������ preserves the form 

of each part. A matrix of the form � (the first part) lives in the 4-dimensional subspace spanned by the 

basis H, −���, −���, −���. Why is this subspace invariant under �′ = ������? Because multiplying three 

unitary matrices yields again a unitary matrix (remember, they form a group): the matrices ��  and ��� 

are unitary by definition and the normalized �/√det � is unitary as well (note that ��� = det �) [GTNut, 

Ch. IV.7, p. 274]. A similar argument can be made for a matrix of the form �̃ (the second part), which 

lives in the 4-dimensional subspace spanned by the basis �H, ��, ��, ��. 

Now, the claim is that the (½, ½) representation of Spin(4) acting on the 4-dimensional subspace defined 

by � (or �̃) is equivalent to the defining representation. To check this with an example, we pick the self-

dual double rotation for which 
�� ≠ 0 and 
�� = 
�� = 
�� = 
�� = 
�� = 0. In this case, the SU(2) 

matrix pair is �� = exp(��
��) and �� = 1	and the rank-2 spinor transforms like	�′ = exp(��
��) �:	
C&3� − �&"� −&*� − �&A�&*� − �&A� &3� + �&"� D = C.��1=;/* 00 .�1=;/*D C&3 − �&" −&* − �&A&* − �&A &3 + �&" D. 

Multiplying out the matrices and solving for the &��, we find that the vector &� transforms like 

Q
R&3�&A�&*�&"�S

T = 12Q
UR
(.��1=;/* + .�1=;/*) 0 0 −�(.��1=;/* − .�1=;/*)0 (.��1=;/* + .�1=;/*) −�(.��1=;/* − .�1=;/*) 00 �(.��1=;/* − .�1=;/*) (.��1=;/* + .�1=;/*) 0�(.��1=;/* − .�1=;/*) 0 0 (.��1=;/* + .�1=;/*) S

VTW
&3&A&*&"X. 

Magically, all the matrix components are real sines and cosines (sin \ = �6exp(−�\) − exp(�\)8/2 and cos \ = 6exp(−�\) + exp(�\)8/2), and the transformation matrix exactly matches the self-dual double-

rotation matrix '�(
��) from our earlier example! Repeating this exercise for the remaining five double 

rotations reveals that the two representations are, in fact, equivalent. 

Just to be sure, let’s also check the action of an algebra element. The generator pair for the above 

double rotation is �� = �� and �� = 0, that is, the rank-2 spinor transforms like �′ = ���:	
C&3� − �&"� −&*� − �&A�&*� − �&A� &3� + �&"� D = 12 _−� 00 �` C&3 − �&" −&* − �&A&* − �&A &3 + �&" D. 

Solving for the &��, indeed recovers the basis generator ,�� from our earlier example: 

Q
R&3�&A�&*�&"�S

T = 12W
0 0 0 −10 0 −1 00 1 0 01 0 0 0 XW

&3&A&*&"X. 


