5.4 SO(4): Self-Dual and Anti-Self-Dual Representations on 3D Vectors

In the previous example, we found two 3-dimensional representations of SO(4), one acting on self-dual and one acting on anti-self-dual tensors. It is instructive to rewrite these representations in a form where they act on 3-component column vectors. For example, letting the matrix for 4D rotation in the $y z$ plane (from the previous example) act on a general self-dual matrix, $Y^{+} \rightarrow R Y^{+} R^{T}$, yields

$$
\left(\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & c & -b \\
-b & -c & 0 & a \\
-c & b & -a & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
0 & a & b \cos \theta_{x}-c \sin \theta_{x} & b \sin \theta_{x}+c \cos \theta_{x} \\
-a & 0 & b \sin \theta_{x}+c \cos \theta_{x} & -\left(b \cos \theta_{x}-c \sin \theta_{x}\right) \\
-\left(b \cos \theta_{x}-c \sin \theta_{x}\right) & -\left(b \sin \theta_{x}+c \cos \theta_{x}\right) & 0 & a \\
-\left(b \sin \theta_{x}+c \cos \theta_{x}\right) & b \cos \theta_{x}-c \sin \theta_{x} & -a & 0
\end{array}\right),
$$

which is again a self-dual matrix, as expected. Now, focusing on the three free parameters a, b, and c, the same transformation can be written in the simpler (unpacked) form

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \rightarrow\left(\begin{array}{c}
a \\
b \cos \theta_{x}-c \sin \theta_{x} \\
b \sin \theta_{x}+c \cos \theta_{x}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{x} & -\sin \theta_{x} \\
0 & \sin \theta_{x} & \cos \theta_{x}
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=R_{y z}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) .
$$

Repeating this procedure for the remaining five factors of R yields the overall 3×3 transformation matrix $R^{\prime}=R_{y z}\left(\theta_{x}\right) \cdot R_{z x}\left(\theta_{y}\right) \cdot R_{x y}\left(\theta_{z}\right) \cdot R_{w x}\left(\phi_{x}\right) \cdot R_{w y}\left(\phi_{y}\right) \cdot R_{w z}\left(\phi_{z}\right)$, where

$$
\begin{aligned}
R_{y z} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{x} & -\sin \theta_{x} \\
0 & \sin \theta_{x} & \cos \theta_{x}
\end{array}\right), R_{z x}=\left(\begin{array}{ccc}
\cos \theta_{y} & 0 & \sin \theta_{y} \\
0 & 1 & 0 \\
-\sin \theta_{y} & 0 & \cos \theta_{y}
\end{array}\right), R_{x y}=\left(\begin{array}{ccc}
\cos \theta_{z} & -\sin \theta_{z} & 0 \\
\sin \theta_{z} & \cos \theta_{z} & 0 \\
0 & 0 & 1
\end{array}\right), \\
R_{w x} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi_{x} & -\sin \phi_{x} \\
0 & \sin \phi_{x} & \cos \phi_{x}
\end{array}\right), R_{w y}=\left(\begin{array}{ccc}
\cos \phi_{y} & 0 & \sin \phi_{y} \\
0 & 1 & 0 \\
-\sin \phi_{y} & 0 & \cos \phi_{y}
\end{array}\right), R_{w z}=\left(\begin{array}{ccc}
\cos \phi_{z} & -\sin \phi_{z} & 0 \\
\sin \phi_{z} & \cos \phi_{z} & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Interestingly, these are just ordinary 3D rotations about the three coordinate axes of the representation space! Moreover, rotating by the angle θ_{x} has the same effect as rotating by the angle ϕ_{x}, etc.

We can simplify the expression for the overall transformation by combining rotations by θ_{i} and ϕ_{i} for the same i into the same matrix. This reduces the number of factors from six to three (see the upper branch of the diagram):

$$
R=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\theta_{x}+\phi_{x}\right) & -\sin \left(\theta_{x}+\phi_{x}\right) \\
0 & \sin \left(\theta_{x}+\phi_{x}\right) & \cos \left(\theta_{x}+\phi_{x}\right)
\end{array}\right)\left(\begin{array}{ccc}
\cos \left(\theta_{y}+\phi_{y}\right) & 0 & \sin \left(\theta_{y}+\phi_{y}\right) \\
0 & 1 & 0 \\
-\sin \left(\theta_{y}+\phi_{y}\right) & 0 & \cos \left(\theta_{y}+\phi_{y}\right)
\end{array}\right)\left(\begin{array}{ccc}
\cos \left(\theta_{z}+\phi_{z}\right) & -\sin \left(\theta_{z}+\phi_{z}\right) & 0 \\
\sin \left(\theta_{z}+\phi_{z}\right) & \cos \left(\theta_{z}+\phi_{z}\right) & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Note that although this simplified matrix is different from the original one because we rearranged the factors for the combining, it is the same representation, just parametrized in a different way.

Similar to what we did for the transformation matrices, we can also unpack the basis generators. In fact, we already did this for T_{x} in the previous example:

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \rightarrow\left(\begin{array}{c}
0 \\
-c \\
b
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=T_{x}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) .
$$

Repeating this procedure for the remaining five basis generators, we find that the three T_{i} are just the generators we had earlier for so(3) and $U_{i}=T_{i}$. Alternatively, we could have taken the derivatives of R with respect to its six parameters and evaluated the results at the identity.

Now, let's turn to the anti-self-dual representation \tilde{R}. Following the same unpacking procedure as before, we find that the first three matrices are the same as in the self-dual case, $\tilde{R}_{y z}=R_{y z}, \tilde{R}_{z x}=R_{z x}$, and $\tilde{R}_{x y}=R_{x y}$, but the second three are inverted: $\widetilde{R}_{w x}=R_{w x}^{-1}, \tilde{R}_{w y}=R_{w y}^{-1}$, and $\tilde{R}_{w z}=R_{w z}^{-1}$. Again, we can simplify the overall transformation by combining matrices that rotate in the same plane:

$$
\tilde{R}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \left(\theta_{x}-\phi_{x}\right) & -\sin \left(\theta_{x}-\phi_{x}\right) \\
0 & \sin \left(\theta_{x}-\phi_{x}\right) & \cos \left(\theta_{x}-\phi_{x}\right)
\end{array}\right)\left(\begin{array}{ccc}
\cos \left(\theta_{y}-\phi_{y}\right) & 0 & \sin \left(\theta_{y}-\phi_{y}\right) \\
0 & 1 & 0 \\
-\sin \left(\theta_{y}-\phi_{y}\right) & 0 & \cos \left(\theta_{y}-\phi_{y}\right)
\end{array}\right)\left(\begin{array}{ccc}
\cos \left(\theta_{z}-\phi_{z}\right) & -\sin \left(\theta_{z}-\phi_{z}\right) & 0 \\
\sin \left(\theta_{z}-\phi_{z}\right) & \cos \left(\theta_{z}-\phi_{z}\right) & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The first three basis generators are the same as in the self-dual case, $\widetilde{T}_{i}=T_{i}$, but the second three have the opposite sign: $\widetilde{U}_{i}=-U_{i}$ (see the lower branch of the diagram).

We found that the 3-dimensional self-dual and anti-self-dual representations of SO(4) consist of ordinary 3D rotations. Are the self-dual and anti-self-dual representations equivalent? No, despite looking very similar, they are not! They cannot be turned into each other with a similarity transformation (= change of basis of the representation space), that is, $\tilde{R} \neq S R S^{-1}$ for any S. The reason for this is that the dependence of the two matrices on the six parameters is rather different: The first one depends on the sum of two plane-rotation angles and the second one on the difference of two plane-rotation angles. In a previous example, we labeled these two representations as $\mathbf{3}$ and $\overline{\mathbf{3}}$.

This example suggests that it may be advantageous to replace the six rotation parameters θ_{i} and ϕ_{i} by the sum $\vartheta_{i}^{+}=\theta_{i}+\phi_{i}$ and difference $\vartheta_{i}^{-}=\theta_{i}-\phi_{i}$. We'll call the original parameters plane-rotation parameters and the new ones self-dual and anti-self-dual double-rotation parameters. In the next example, we'll carry out this parameter change for the defining representation of $\mathrm{SO}(4)$.

