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5.4 SO(4): Self-Dual and Anti-Self-Dual Representations on 3D Vectors
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In the previous example, we found two 3-dimensional representations of SO(4), one acting on self-dual
and one acting on anti-self-dual tensors. It is instructive to rewrite these representations in a form
where they act on 3-component column vectors. For example, letting the matrix for 4D rotation in the
yz plane (from the previous example) act on a general self-dual matrix, Y* — RY*R7, yields

0 a b c 0 a b cos 0, — csin 6, bsin @, + c cos 6,
-a 0 ¢ -b|_ —a 0 bsin6, + ccos@, —(bcosb,— csinby)
-b —c 0 a —(bcos@, —csinb,) —(bsinb, + ccosb,) 0 a ’
—-c b —a 0 —(bsinf, + ccos b,) bcos @, —csinf, —-a 0

which is again a self-dual matrix, as expected. Now, focusing on the three free parameters a, b, and c,
the same transformation can be written in the simpler (unpacked) form

a a 1 0 0 a a
(b) > <b cos 6, — csin 9x> = <0 cosf, —sin 0x> (b) =Ry, (b>
c bsin6, + ccos 6, 0 sinf, cos6,/ \c c
Repeating this procedure for the remaining five factors of R yields the overall 3x3 transformation matrix
R = Ryz(ex) ) sz(gy) ) ny(ez) "Rux(¢x) - Rwy(d)y) “Ryz(¢,), where

1 0 0 cost, 0 sind, cosf, —sinf, 0
Ry, = (0 cosf, —sin Bx), R, = 0 0 » Ryy = (sin 6, coséb, O).

0 sinf, cos@, —sinf, 0 coso, 0 0 1

1 0 0 cos¢p, 0 sing, cos¢, —sing, 0
Ry, = (0 cos¢, —sin ¢>x>, R,y = 0 0 , Ry, = (sin ¢, cosq, O)-

0 sing, cosg, —sing, 0 cos¢, 0 0 1

[uny

[uny

Interestingly, these are just ordinary 3D rotations about the three coordinate axes of the representation
space! Moreover, rotating by the angle 8,, has the same effect as rotating by the angle ¢,, etc.
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We can simplify the expression for the overall transformation by combining rotations by 8; and ¢; for
the same i into the same matrix. This reduces the number of factors from six to three (see the upper
branch of the diagram):

1 0 0 cos(By +¢y) 0 sin(0y + )\ rcos(6, + ¢p,) —sin(6, +¢,) 0
R = (0 cos(fy + ¢x) —sin(fy + ¢x)> 0 1 0 (sin(@z +¢,)  cos(, + ¢,) 0).
0 sin(0y + ¢,) cos(0, + ¢y) —sin(8, + ¢,) 0 cos(8, + ¢y) 0 0 1

Note that although this simplified matrix is different from the original one because we rearranged the
factors for the combining, it is the same representation, just parametrized in a different way.

Similar to what we did for the transformation matrices, we can also unpack the basis generators. In fact,
we already did this for T, in the previous example:

a 0 0 0 O a a
(b> R <_) :< 0 _1> (b> _1, (b>
c b 0 1 0 c c
Repeating this procedure for the remaining five basis generators, we find that the three T; are just the

generators we had earlier for so(3) and U; = T;. Alternatively, we could have taken the derivatives of R
with respect to its six parameters and evaluated the results at the identity.

o

Now, let’s turn to the anti-self-dual representation R. Following the same unpacking procedure as

before, we find that the first three matrices are the same as in the self-dual case, Ry, = Ry, R;x = Ry,

and R,y = Ryy, but the second three are inverted: Ry,» = Ry%, Ryyy = Ryyy, and Ry, = Ry7. Again, we
can simplify the overall transformation by combining matrices that rotate in the same plane:
1 0 0 cos(By —¢y) 0 sin(0y —y)\ rcos(6, — ¢p,) —sin(6, —¢p,) 0
R= (0 cos(by — ¢yx) —sin(b, — ¢x)> 0 1 0 (sin(Gz —¢,) cos(0, —¢,) 0)-
0 sin(0y—¢pyx) cos(bx — ¢y) - Sin(gy - ¢y) 0 COS(Qy - d)y) 0 0 1

The first three basis generators are the same as in the self-dual case, T; = T;, but the second three have
the opposite sign: U; = —U; (see the lower branch of the diagram).

We found that the 3-dimensional self-dual and anti-self-dual representations of SO(4) consist of
ordinary 3D rotations. Are the self-dual and anti-self-dual representations equivalent? No, despite
looking very similar, they are not! They cannot be turned into each other with a similarity
transformation (= change of basis of the representation space), that is, R # SRS~ for any S. The reason
for this is that the dependence of the two matrices on the six parameters is rather different: The first
one depends on the sum of two plane-rotation angles and the second one on the difference of two
plane-rotation angles. In a previous example, we labeled these two representations as 3 and 3.

This example suggests that it may be advantageous to replace the six rotation parameters 6; and ¢; by
the sum 9;" = 0; + ¢; and difference ¥;” = 0; — ¢;. We'll call the original parameters plane-rotation
parameters and the new ones self-dual and anti-self-dual double-rotation parameters. In the next
example, we'll carry out this parameter change for the defining representation of SO(4).
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