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3.14 SU(2): Spinor-Field Representation; Two Types of Angular Momenta 

First, we discussed the spin of a particle at a fixed location, then, we discussed the orbital angular 

momentum of a non-spinning (scalar) particle roaming through space. Now, it’s time to tackle a particle 

with spin ½ roaming through space! To describe this kind of particle, an electron for example, we need a 

wave function with two components: an amplitude for “spin up” and an amplitude for “spin down” at 

every point in space: (���(��), �	
��(��)). In other words, we need a spinor field. How does such a 

field transforms under SU(2) and what are the generators of this representation? The answer to the 

latter question will provide us with the operators for the angular momentum of a spinor field. 

The upper branch of the diagram shows again the representation acting on a scalar field, but this time 

written in a more compact notation. We packed the three coordinates into the vector �� = (�, �, �) and 

the three partial derivatives into the vector ∇���	= (�/��, �/��, �/��). Moreover, we used the axis-angle 

parameters �� = ���, where �� is the unit vector along the axis, � = 1, 2, 3, and � is the rotation angle 

about this axis. Finally, we used the Einstein summation convention, which implies a summation over 

products with repeated indices. A general element of the Lie algebra can now be written as � = ���� 

(summation implied), where �� = −�[�� × ∇���]� are the (Cartesian) basis generators (expressed as the �-th 

component of the cross product). Exponentiating � yields the Lie-group element # = $%&'()(  

(summation in the exponent implied). This operator is the same thing that we earlier wrote as             

# =	∙ (+%,[��] ∙	). Thus, we can write SU(2) transformations of a scalar field in two equivalent ways: 

�′(��) = $%&'()(�(��) or �′(��) = �(+%,[��]	��). 

Moving on to the spinor field �.(��) = (�,(��), �/(��)), an SU(2) transformation now must do two 

things: first it must rotate the function in space (as in the scalar case) and second it must  rotate the 

spinor at each point in space. Phrased differently, the transformation now consists of two parts, a first 

part that acts on the coordinates of the function’s argument and a second part that mixes the 

components of the function [PfS, Ch. 3.7.11]. For the first part we use again +%,[��] acting on the 
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position vector �� and for the second part we use the 2×2 matrix 6[��] acting on the spinor �., where 

6[��] is the 2-dimensional (defining) representation of SU(2), which we discussed earlier but now write 

as 6 instead of #. Thus, the overall transformation is �.′(��) = 6[��]	�.(+%,[��]	��). Splitting off the 

transformation operator from the spinor field using our informal dot notation, we get                           

#5 = 6[��]7	∙ (+%,[��] ∙	)8, where, as before, we have to insert the field’s name at the first dot and the 

position argument at the second dot (see the diagram). 

What are the basis generators of this spinor-field representation? First, we know that 6[��] = $%&G()(, 

where 2� = B�/2 are the basis generators of the 2-dimensional representation. Then, we can write       

7	∙ (+%,[��] ∙	)8 = $%&H()(, where <� = −�[�� × ∇���]�C are the basis generators of the infinite-dimensional 

representation. The <� are almost the same as the �� from the scalar case, except that we have to 

multiply them with the 2×2 identity matrix C so that they can act on 2-component spinors. Combining 

the two parts, we get the overall transformation #5 = $%&G()($%&H()(. Using the fact that the generators 

2� and <� commute, we can write #5 = $%&(G(IH())( = $%&'A()(, where �A� = 2� + <� = B�/2	 −
�[�� × ∇���]�C are the three basis generators of the spinor-field representation (see the diagram). In 

quantum mechanics, �AK is the operator for the angular momentum along the � axis. For the spinor field, 

this angular momentum is composed of spin and orbital angular momentum and we call it the overall 

angular momentum (total angular momentum is already used for �AL/ + �AM/ + �AK/). 

For example, the generator of rotation about the � axis is �AK = ,
/ N1 00 −1P − �(� Q

QM − � Q
QL) N1 00 1P or, 

after switching to spherical coordinates, �AK = ,
/ N1 00 −1P − � Q

QR N1 00 1P. Finally, letting this generator 

act on the arbitrary spinor field �. = S�,�/T = SsinΘ $&R
cosΘ T, we get �.′ = �AK�. = ,

/ SsinΘ $&R
−cosΘ T +

SsinΘ $&R
0 T = ,

/ S3	sinΘ $&R
−cosΘ T. 

The arbitrary spinor field from above is not an eigenfunction of the generator �AK. But we can easily 

construct eigenfunctions of �AK = 2K + <K by multiplying an eigenvector of 2K with an eigenfunction of 

<K. The corresponding eigenvalues are just the eigenvalues of 2K plus the eigenvalues of <K. For 

example, combining the spin eigenvector (1, 0) of 2K with eigenvalue ½ and the orbital eigenfunction 

sinΘ $%&R of <K with eigenvalue −1 yields the spinor field �. = N10P sinΘ $%&R. This spinor field satisfies 

the eigenequation �AK�. = ([
\ − 1)�. and thus has an overall angular momentum of −½ (along the � axis). 

To summarize: There are two types of angular momenta because angular momentum is the generator of 

rotation and we need to rotate (i) the field’s location in space and (ii) the orientation of the field’s 

components! Although orbital angular momentum and spin seem qualitatively rather different, their 

operators can simply be added together. Furthermore, for states of definite angular momentum (= 

eigenstates), their values (= eigenvalues of the states) can simply be added together as well. 

It is easy to generalize this spinor-field example to other types of fields, such as a vector field. We simply 

replace the 2-dimensional representation of SU(2) with, say, the 3-dimensional representation for a 

vector field. In other words, we only need to update the transformation matrix 6[��] and the associated 

generators 2�, everything else remains the same.  


