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3.12 SU(2): Application to Orbital Angular Momentum; Spherical Harmonics 

In the previous example, we introduced an infinite-dimensional representation of SU(2) that acts on the 

function �(��), where the components of �� = (��, �	, �
)� are Cartesian (position) coordinates (see the 

upper branch of the diagram). However, for problems with spherical symmetry, it is more natural to 

write this function as ��(�), where the components of � = (�, Θ,�)� are now spherical (position) 

coordinates: � is the radius, Θ is the colatitude, and � is the longitude (such that �� = � sinΘ cos�, 

�	 = � sinΘ sin�, and �
 = � cosΘ). When rewritten in spherical coordinates, the three basis 

generators �� become the ��� shown in the lower branch of the diagram [QTGR, Ch. 8.3]. 

A simple basis for the functions in the representation space is the position basis. For Cartesian 

coordinates, this basis consists of the functions �
(�� − ��), an infinitude of Dirac pulses, one at every 

possible position �� = (��, �	, �
)�. An arbitrary function can now be written as a weighted sum (actually, 

integral) of these pulses (see the upper branch of the diagram). However, we know that a more 

meaningful basis is given by the eigenfunctions of the generators. In quantum mechanics, these basis 

functions are the wave functions for which the respective observable (here: angular momentum) has a 

definite value. Working in spherical coordinates, we pick the basis generator ��� = −��/�� and solve the 

eigenequation ���Ψ!(�) = "Ψ!(�). Keeping in mind that the function ��(�), and thus the 

eigenfunctions Ψ!(�), must assume the same value for � and � + 2%, we find the solutions 

Ψ!(�, Θ, �) = &(�, Θ) ∙ (�!), where &(�, Θ) is an arbitrary function of � and Θ and the associated 

eigenvalues are " = 0,±1,±2, etc. So, we get nice orthogonal basis functions of � (e.g., along the 

equator of the unit sphere), but we do not get unique basis functions on the whole 3-dimensional 

(�, Θ, �)-space because any function &(�, Θ) satisfies the above eigenequation. 

What can we do to get unique orthogonal functions on the whole space? The trick is to use a second 

operator and pick the functions that are eigenfunctions of both operators. For the two operators to have 

joint eigenfunction, they must commute. So, operators ��- and ��. are no good. However, the Casimir 
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operator ��N	 = ��-	 + ��.	 + ���	, which we met earlier, commutes with ��� as well as the other basis 

generators. In spherical coordinates, the Casimir operator evaluates to ��N	 = −(1/ sinΘ)(�/
�Θ)(sinΘ)�/�Θ − (1/ sin	 Θ)�	/��	 and is independent of � [QTGR, Ch. 8.4]. The joint eigenfunctions 

can be written as the product ΨO,!(�, Θ, �) = &(�) ∙ LO,!(Θ,�), where the LO,!(Θ,�) are the so-called 

spherical harmonics and &(�) is an arbitrary function of �. The spherical harmonics simultaneously 

satisfy the two eigenequations ��N	LO,! = P(P + 1)LO,! and  ���LO,! = "LO,!. The eigenvalues P(P + 1) and 

" are given by P = 0, 1, 2, … and " = 0,±1,±2,…± P. In general, the functions LO,!(Θ,�) are quite 

complicated, but for P = 0 and 1 we have: LG,G = const. (shaped like a sphere), L�,G ∝ cosΘ (shaped like 

a dumbbell aligned with the B axis), L�,3� ∝
S
√U
sinΘ (3�), and L�,V� ∝ −

S
√U
sinΘ (�) [QTGR, Ch. 8.3]. 

Note that these functions depend on � like (�!), as we found earlier. Incidentally, the linear 

combinations S
√U
	(L�,3� − L�,V�) = sinΘ cosϕ and S

√U
	�(L�,3� + L�,V�) = sinΘ sinϕ are real-valued 

functions (shaped like dumbbells aligned with the � and A axes, respectively). To better visualize these 

functions, search the Internet for pictures and animations of spherical harmonics. 

Now, we have nice orthogonal basis functions of � and Θ, but the radial direction is still “unstructured”. 

To complete the orthogonal 3D basis, we must include one more commuting operator. A simple choice 

is � (the operator that multiplies its target by the radial coordinate), which has the eigenfunctions �(� −
K) (a Dirac pulse at every possible radial coordinate K) and the eigenvalues K ∈ ℝ. Thus, a complete set 

of basis functions is ΨY,O,!(�, Θ,�) = �(� − K) ∙ LO,!(Θ,�) labeled by two discrete parameters, P and ", 

and one continuous one, K (see the lower branch of the diagram). 

In summary, for our infinite-dimensional representation, ��� alone cannot provide a unique set of 

orthogonal basis functions. We need three (commuting) operators to achieve this feat. Correspondingly, 

we need three eigenvalues to label the basis functions: ΨY,O,!(�, Θ, �). 

In quantum mechanics, the operator ��� is the observable for the B component of the angular 

momentum and the Casimir operator ��N	 is the observable for the (squared) total angular momentum. 

The angular momentum of the spread-out wave function ��(�, Θ, �) is called orbital angular momentum. 

(In contrast, the “nailed down” particles we discussed earlier had intrinsic angular momentum or spin.) 

The basis functions ΨY,O,!(�, Θ, �) are the wave functions with definite orbital angular momentum: for 

units in which ℏ = 1, their (squared) total magnitude is P(P + 1) and their B component is " (in Dirac 

notation these basis functions would be written as ⟨�, Θ, �|K, P,"⟩). An important difference between 

orbital angular momentum and spin is that the former takes on only integer values, P = 0, 1, 2, …, 

whereas the latter can also take on half-integer values P = 0, S
U
, 1, ^

U
, … 

In classical mechanics, angular momentum is associated with speed of rotation. But our wave functions 

do not move; our description does not even include time! As we have discussed earlier, angular 

momentum in quantum mechanics can be understood as “angular waviness”. One wave period 

wrapping around in a circle implies an angular momentum of one, two wave periods imply an angular 

momentum of two, etc. That’s how electrons in an atom can “orbit” the nucleus (= have orbital angular 

momentum) without moving (= with a stationary wave function), thus avoiding energy loss due to 

electromagnetic radiation! Does a wave function ever move? A state of definite energy _ contains the 

time-dependent phase factor (3�`a, but because b(3�`ab = 1 the probability distribution |�|	 does not 

move. However, a superposition of states with different energies results in a beating among the phase 

factors, producing a time dependent |�|	. (See [FLP, Vol. III, Ch. 7-2] for more details.)  


