3.12 SU(2): Application to Orbital Angular Momentum; Spherical Harmonics

In the previous example, we introduced an infinite-dimensional representation of $\operatorname{SU}(2)$ that acts on the function $\psi(\vec{x})$, where the components of $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T}$ are Cartesian (position) coordinates (see the upper branch of the diagram). However, for problems with spherical symmetry, it is more natural to write this function as $\tilde{\psi}(\vec{s})$, where the components of $\vec{s}=(r, \Theta, \phi)^{T}$ are now spherical (position) coordinates: r is the radius, Θ is the colatitude, and ϕ is the longitude (such that $x_{1}=r \sin \Theta \cos \phi$, $x_{2}=r \sin \Theta \sin \phi$, and $x_{3}=r \cos \Theta$). When rewritten in spherical coordinates, the three basis generators J_{i} become the \tilde{J}_{i} shown in the lower branch of the diagram [QTGR, Ch. 8.3].

A simple basis for the functions in the representation space is the position basis. For Cartesian coordinates, this basis consists of the functions $\delta^{3}(\vec{x}-\vec{\xi})$, an infinitude of Dirac pulses, one at every possible position $\vec{\xi}=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)^{T}$. An arbitrary function can now be written as a weighted sum (actually, integral) of these pulses (see the upper branch of the diagram). However, we know that a more meaningful basis is given by the eigenfunctions of the generators. In quantum mechanics, these basis functions are the wave functions for which the respective observable (here: angular momentum) has a definite value. Working in spherical coordinates, we pick the basis generator $\tilde{J}_{z}=-i \partial / \partial \phi$ and solve the eigenequation $\tilde{J}_{z} \Psi_{m}(\vec{s})=m \Psi_{m}(\vec{s})$. Keeping in mind that the function $\tilde{\psi}(\vec{s})$, and thus the eigenfunctions $\Psi_{m}(\vec{s})$, must assume the same value for ϕ and $\phi+2 \pi$, we find the solutions $\Psi_{m}(r, \Theta, \phi)=F(r, \Theta) \cdot e^{i m \phi}$, where $F(r, \Theta)$ is an arbitrary function of r and Θ and the associated eigenvalues are $m=0, \pm 1, \pm 2$, etc. So, we get nice orthogonal basis functions of ϕ (e.g., along the equator of the unit sphere), but we do not get unique basis functions on the whole 3-dimensional (r, Θ, ϕ)-space because any function $F(r, \Theta)$ satisfies the above eigenequation.

What can we do to get unique orthogonal functions on the whole space? The trick is to use a second operator and pick the functions that are eigenfunctions of both operators. For the two operators to have joint eigenfunction, they must commute. So, operators \tilde{J}_{x} and \tilde{J}_{y} are no good. However, the Casimir
operator $\tilde{J}_{C}^{2}=\tilde{J}_{x}^{2}+\tilde{J}_{y}^{2}+\tilde{J}_{z}^{2}$, which we met earlier, commutes with \tilde{J}_{z} as well as the other basis generators. In spherical coordinates, the Casimir operator evaluates to $\tilde{J}_{C}^{2}=-(1 / \sin \Theta)(\partial /$ $\partial \Theta)(\sin \Theta) \partial / \partial \Theta-\left(1 / \sin ^{2} \Theta\right) \partial^{2} / \partial \phi^{2}$ and is independent of r [QTGR, Ch. 8.4]. The joint eigenfunctions can be written as the product $\Psi_{j, m}(r, \Theta, \phi)=F(r) \cdot Y_{j, m}(\Theta, \phi)$, where the $Y_{j, m}(\Theta, \phi)$ are the so-called spherical harmonics and $F(r)$ is an arbitrary function of r. The spherical harmonics simultaneously satisfy the two eigenequations $\tilde{J}_{C}^{2} Y_{j, m}=j(j+1) Y_{j, m}$ and $\tilde{J}_{Z} Y_{j, m}=m Y_{j, m}$. The eigenvalues $j(j+1)$ and m are given by $j=0,1,2, \ldots$ and $m=0, \pm 1, \pm 2, \ldots \pm j$. In general, the functions $Y_{j, m}(\Theta, \phi)$ are quite complicated, but for $j=0$ and 1 we have: $Y_{0,0}=$ const. (shaped like a sphere), $Y_{1,0} \propto \cos \Theta$ (shaped like a dumbbell aligned with the z axis), $Y_{1,-1} \propto \frac{1}{\sqrt{2}} \sin \Theta e^{-i \phi}$, and $Y_{1,+1} \propto-\frac{1}{\sqrt{2}} \sin \Theta e^{i \phi}$ [QTGR, Ch. 8.3]. Note that these functions depend on ϕ like $e^{i m \phi}$, as we found earlier. Incidentally, the linear combinations $\frac{1}{\sqrt{2}}\left(Y_{1,-1}-Y_{1,+1}\right)=\sin \Theta \cos \phi$ and $\frac{1}{\sqrt{2}} i\left(Y_{1,-1}+Y_{1,+1}\right)=\sin \Theta \sin \phi$ are real-valued functions (shaped like dumbbells aligned with the x and y axes, respectively). To better visualize these functions, search the Internet for pictures and animations of spherical harmonics.

Now, we have nice orthogonal basis functions of ϕ and Θ, but the radial direction is still "unstructured". To complete the orthogonal 3D basis, we must include one more commuting operator. A simple choice is r (the operator that multiplies its target by the radial coordinate), which has the eigenfunctions $\delta(r-$ ρ) (a Dirac pulse at every possible radial coordinate ρ) and the eigenvalues $\rho \in \mathbb{R}$. Thus, a complete set of basis functions is $\Psi_{\rho, j, m}(r, \Theta, \phi)=\delta(r-\rho) \cdot Y_{j, m}(\Theta, \phi)$ labeled by two discrete parameters, j and m, and one continuous one, ρ (see the lower branch of the diagram).

In summary, for our infinite-dimensional representation, \tilde{J}_{Z} alone cannot provide a unique set of orthogonal basis functions. We need three (commuting) operators to achieve this feat. Correspondingly, we need three eigenvalues to label the basis functions: $\Psi_{\rho, j, m}(r, \Theta, \phi)$.
In quantum mechanics, the operator \tilde{J}_{Z} is the observable for the z component of the angular momentum and the Casimir operator \tilde{J}_{C}^{2} is the observable for the (squared) total angular momentum. The angular momentum of the spread-out wave function $\tilde{\psi}(r, \Theta, \phi)$ is called orbital angular momentum. (In contrast, the "nailed down" particles we discussed earlier had intrinsic angular momentum or spin.) The basis functions $\Psi_{\rho, j, m}(r, \Theta, \phi)$ are the wave functions with definite orbital angular momentum: for units in which $\hbar=1$, their (squared) total magnitude is $j(j+1$) and their z component is m (in Dirac notation these basis functions would be written as $\langle r, \Theta, \phi \mid \rho, j, m\rangle$). An important difference between orbital angular momentum and spin is that the former takes on only integer values, $j=0,1,2, \ldots$, whereas the latter can also take on half-integer values $j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$

In classical mechanics, angular momentum is associated with speed of rotation. But our wave functions do not move; our description does not even include time! As we have discussed earlier, angular momentum in quantum mechanics can be understood as "angular waviness". One wave period wrapping around in a circle implies an angular momentum of one, two wave periods imply an angular momentum of two, etc. That's how electrons in an atom can "orbit" the nucleus (= have orbital angular momentum) without moving (= with a stationary wave function), thus avoiding energy loss due to electromagnetic radiation! Does a wave function ever move? A state of definite energy E contains the time-dependent phase factor $e^{-i E t}$, but because $\left|e^{-i E t}\right|=1$ the probability distribution $|\psi|^{2}$ does not move. However, a superposition of states with different energies results in a beating among the phase factors, producing a time dependent $|\psi|^{2}$. (See [FLP, Vol. III, Ch. 7-2] for more details.)

