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3.13 SU(2): Application to Electron Orbitals; Reducible Representations 

We continue to explore the infinite-dimensional representation of SU(2) from the previous example, but 

from now on we’ll ignore the radial direction of the representation space and focus on just the unit 

sphere where our functions can be written as �(Θ, �).  
Unlike the finite-dimensional representations that we discussed earlier, this infinite-dimensional 

representation is reducible, that is, it can be broken up into sub-representations. In other words, the 

infinite-dimensional representation space can be divided up into subspaces that get mapped to 

themselves. Thus, each subspace furnishes a valid representation of SU(2)! How can we identify these 

subspaces? Remember that the eigenvalues of the Casimir operator ��	 can be used to delineate 

irreducible representations? We already know that the eigenvalues of ��	 are 
(
 + 1) and thus 
 directly 

labels these subspaces! Subspace 
 consists of the (complex) linear combinations of the basis functions 

�,�(Θ,�) with � = 0,±1,±2,…± 
. Since there are 2
 + 1 such basis functions the irreducible sub-

representations are (2
 + 1)-dimensional. The diagram shows two such sub-representations, one for 
 =
1 with three basis functions (upper branch) and one for 
 = 2 with five basis functions (lower branch). 

When applied to electron orbitals in atoms, the electron wave functions furnishing the 3-dimensional 

representation are known as p-waves and those furnishing the 5-dimensional representation as d-

waves. 

We can pick any function within an invariant subspace (= a complex linear combination of the respective 

basis functions), rotate it arbitrarily in 3D space, and get again a function in that same space. For 

example for the subspace 
 = 1, we can pick the dumbbell-shaped basis function �,�(Θ,�), rotate the � 

axis into the � axis, and then express the result as a combination of the remaining two basis functions 
�
√�	[�,��(Θ,�) − �,!�(Θ,�)]. Similarly, if we rotate the � axis into the " axis, we can express the result 

as �√�	#[�,��(Θ,�) + �,!�(Θ,�)]. (See [FLP, Vol. III, Ch. 19-5] for more details.) 
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Why does the space of wave functions in quantum mechanics have invariant subspaces? Subspace 
 
contains all possible wave functions with the (definite) total angular momentum 
. Rotating such a wave 

function arbitrarily in 3D space does not change its total angular momentum, it only changes the angular 

momentum’s orientation in space (or, equivalently, its � component). Thus, the rotated wave function 

must again be a member of the subspace 
. 
At first glance, the subspaces may appear to be infinite dimensional because they contain functions that 

take on values at infinitely many (Θ, �) points. However, this is an illusion because all functions in a 

given subspace can be constructed from just the 2
 + 1 basis function and thus are fully specified by 

2
 + 1 (complex) coefficients. In fact, we can “unpack” the functions belonging to a subspace and write 

them as (2
 + 1)-dimensional vectors. This is analogous to how we unpacked the matrices in the adjoint 

representation into simple vectors. When we unpack the functions into (2
 + 1)-dimensional vectors, 

we also have to unpack the transformations in the Lie group and the differential operators in the Lie 

algebra (the generators) into (2
 + 1) × (2
 + 1) matrices. 

For example, a general function in our 3-dimensional subspace can be written as � = ���,!� + �	�,� +�/�,�� or, more explicitly, as � = −��	 �√� sinΘ 5:D + �	 cosΘ + �/	 �√� sinΘ 5�:D	and is fully specified by 

the complex vector (��, �	, �/)
E. Now, if we act with the differential operator �, = −#6/6� on this 

function, we get �′ = −��	
�

√�
sinΘ 5:D − �/	

�

√�
sinΘ 5�:D. Comparing this to the general subspace 

function �′ = −��
0 	 �
√�
sinΘ 5:D + �	

0 cosΘ + �/
0 	 �
√�
sinΘ 5�:D, we find that ��

0 = ��, �	
0 = 0, and �/

0 =

−�/. Thus, the unpacked generator is just the familiar 3×3 matrix for rotating spin-1 particles about the 

� axis! Repeating this procedure for the remaining two generators, �* and �+, confirms that the p-wave 

representation is isomorphic to the 3-dimensional representation on vectors we discussed earlier. 

Similarly, the d-wave representation is isomorphic to the 5-dimensional representation on vectors. 

We have thus discovered a method for constructing new irreducible representations from old ones: 

From a known finite-dimensional representation construct an infinite-dimensional representation on 

functions. Then, with the help of the Casimir operator, break this infinite-dimensional representation 

into finite-dimensional irreducible representations. It is possible to obtain all irreducible representations 

of SU(2) in this way (not just the odd-dimensional ones, as suggested by our example) [QTGR, Ch. 8.2]. 

We are now in a position to understand an important aspect of the electron orbitals in atoms. Compact 

and stationary electron wave functions have discrete and definite energy levels. But not every basis 

wave function of the electron in the rotationally symmetric atom has its distinct energy level! Rotational 

symmetry dictates that wave functions that belong to the same irreducible representation of SU(2) have 

the same energy (as well as the same total angular momentum). For a given total angular momentum 
 
there are 2
 + 1 basis wave functions with the same energy (but different orientations in space). In 

atoms, the lowest energy level belongs to the spherical 1s orbital; the next one up is the spherical 2s 

orbital followed by three dumbbell-shaped 2p orbitals with the same energy but three different 

orientations; then there is one 3s, followed by three 3p, followed by five 3d orbitals, etc. Here the 

number indicates the electron shell and the letter the subshell to which the orbital belongs. All orbitals 

within the same subshell have the same energy. This (2
 + 1)-fold degeneracy has important 

consequences for how the electrons fill up the shells, which, in turn, determines the structure of the 

periodic table of the elements. (See [FLP, Vol. III, Ch. 19-6] for more details.) 

 


