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3.11 SU(2): Infinite-Dimensional Representations; Functions and Differential Operators 

After exploring several finite-dimensional representations, we now turn to an infinite-dimensional 

representation of SU(2). Instead of letting the representation act on a column vector, we now let it act 

on a function of a continuous variable, �(�). We can think of this function as a vector with infinitely 

many entries, one for each possible value of the function’s argument �. There are many kinds of 

functions, and we must specify which one we are talking about. Here we choose the square-integrable 

complex functions of three real variables: �(��) ∈ ��(ℝ
) where �� = (��, ��, �
)� = (�, �, �)�. 

Functions of this kind taper off to zero fast enough such that they can be normalized. This feature makes 

them suitable for quantum-mechanical wave functions. (Our �(��) could represent a single-particle 

wave function at one instant of time; in Dirac notation such a wave function would be written ⟨��|�⟩.) 
How does SU(2) act on these functions? The upper branch of the diagram shows again the 3-

dimensional representation on real vectors from a few examples ago, but with the transformation 

matrix � renamed to � (for rotation). Now, we use this 3-dimensional representation to transform the 

3D argument �� of our function: �′(��) = �(�����). In other words, we reuse the old “mechanism” for 

rotating vectors in 3D space, but now we “attach” a function to it. (Somewhat like attaching a flight-

simulator cabin to an existing hydraulic mechanism.) We must use the inverse matrix, ���, rather than �, because to rotate a function one way, we need to rotate its argument in the opposite way [QTGR, Ch. 

1.3.2]. (For a simple analogy: to shift the function �(�) by one unit in the positive � direction, we need 

to write �(� − 1).) 

While it was straightforward to separate a matrix from the vector it acts on, it is not obvious how to 

separate the operator in the expression �(���[��, �� , ��]	��) from the function �(��) it acts on. We 

could simply define the operator �" such that �"	�(��) ∶= �(���[��, ��, ��]	��). But here we use the less 

formal “dot notation” and write �" =	∙ (���[��, �� , ��] ∙	). When this operator acts on the function �(��), the function’s name � gets inserted at the first dot and the argument �� gets inserted at the 
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second dot. The lower branch of the diagram shows our infinite-dimensional representation acting on 

functions.                                                

To find the elements of the Lie algebra, we have to differentiate the elements of the Lie group. This was 

easy to do when the elements were matrix operators, but our new operator �" is closely intertwined 

with the function it acts on. The trick is to differentiate them together and then split the result into a 

differential operator 0@ and the function it acts on. Focusing on the parameter ��, the operator acting on 

the function can be written explicitly as 

�"(��)	�(��) = �(���[��]	��) = �(�[−��]	��) = � A �� cos �� + �� sin��−�� sin�� + �� cos��	�

C. 

Taking the derivative with respect to �� (using the chain rule), setting �� to zero, and multiplying by / 
yields the operator acting on the function 

0@�	�(��) = / A3�3�� ∙ �� + 3�3�� ∙ (−��)C = / E�� 33�� − �� 33��F�. 
Now, splitting off the operator from the function, we get the basis generator 

0@� = / E�� 33�� − �� 33��F. 
The generators 0@ of our infinite-dimensional representation are differential operators! We can think of a 

differential operator as a (sparse) matrix with infinitely many entries. The lower branch of the diagram 

shows the explicit form of all three basis generators, where we have written �, � and � instead of ��, �� 

and �
 to get rid of the indices. To make the notation more compact, we can collect the three basis 

generators into a vector, 0� ∶= (0� , 0� , 0�)�, and write 0� = −/�� + ∇HH�, where + is the cross product and 

∇HH�	= (3/3��, 3/3��, 3/3�
)�. Finally, it can be shown that our new basis generators satisfy the usual 

commutation relations of su(2) [GTNut, Ch. I.3 App. 1]. 

Are the group elements �" unitary and the generators 0@ Hermitian, just like their finite-dimensional 

counterparts � and 0 were? To answer these questions, we first need to understand what it means for 

an operator that acts on functions (as opposed to on vectors) to have these properties. We can’t check 

�,� = I for unitarity, as we did for matrix operators! Instead, we must let the operator act on a 

function, �"�(�), and then check its properties using the Hermitian inner product of two functions �(�) 

and J(�), which is defined as K�∗(�)J(�)	M� (in Dirac notation this product would be written ⟨�|J⟩). 
Fortunately, our functions are square integrable! 

To check whether an operator is unitary, we test if KN�"�(�)O
∗
�"J(�)	M� = K�∗(�)J(�)	M� holds for 

any pair of functions �(�) and J(�). (This is analogous to the matrix test (��),�� = �,� from which 

�,� = I follows.) Similarly, to check whether an operator is Hermitian, we test if K�∗(�)P"J(�)	M� =
K[P"�(�)]∗J(�)	M� holds for any pair of functions �(�) and J(�). (This is analogous to the matrix test 

�,P� = (P�),� from which P = P, follows.) It turns out that indeed �" is unitary and 0@ is Hermitian. 


