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3.8 SU(2): Adjoint Representation; Transforming the Generators 

For any Lie group there is a distinguished representation known as the adjoint representation. We know 

that every Lie group has a Lie algebra associated with it and that this Lie algebra is a vector space. The 

adjoint representation is the representation on this automatically available vector space. In other words, 

the adjoint representation acts on the generators!  

For SU(2) the Lie algebra is three dimensional (it has three basis generators), hence the adjoint 

representation is also three dimensional. The diagram shows how the representation space of the 

adjoint representation is a copy of the (defining) Lie-algebra representation (red arrows). To keep the 

elements of this representation space distinct from the elements of the Lie algebra, we rename them 

from � to �. Note that instead of the usual column vectors, we now have matrices in the representation 

space! But these matrices together with the basis matrices, �� , �� , ��, form a regular 3-dimensional 

vector space. In particular, we can linearly combine the three basis matrices (using real numbers) to 

form a general element in the representation space. Later we will “unpack” these matrices into column 

vectors, bringing the representation into a more familiar form. (Note that we multiplied the basis 

matrices �� = ��/2 by two to get rid of the factor ½; this is allowed because the basis of the 

representation space does not need to satisfy commutation relations.) 

How does the adjoint representation of the Lie group act on the matrix �? It doesn’t act by simple 

matrix multiplication, as one might naively guess, but by means of the operation �′ = ��� known as 

conjugation (also written as ���(�) 	= 	���). To understand why this is the correct operation, we 

need to consider two things: (i) For any given , the map �′ = ��� is a structure-preserving map 

(homomorphism) from the group to itself because (��)�� = ���	���. Note that , �, � are 

all elements of the group. (ii) The map �′ = ��� sends the identity element and its neighborhood to 

themselves. But this is exactly where the linear (tangent) space, that is, the Lie algebra, touches the 

group manifold! Thus, the above map induces a structure-preserving map from the algebra to itself 

given by � + ��′ = (� + ��)��, or, after simplifying, �′ = ���. 

 =
cos

��

 
!"sin

��

 

!"sin
��

 
cos

��

 

cos
�%

 
!sin

�%

 

sin
�%

 
cos

�%

 

exp!"
�)

 
0

0 exp "
�)

 

+ , , unitary (- = ��), determinant=1

3 parameters: .� , .� , .�
Lie Group SU(2)

Topology:

3-sphere (/0)

+ 

1
0

,
0
1

+ , , unitary (- = ��), determinant=1

3 parameters: .�, .�, .�

⊂ + , 

+ , , Hermitian (�- = �), trace=0

3D basis (Pauli):

�� =
1

2 0 11 0 = ��2 ,		��= 1
2 0 !"" 0 = ��2 ,		��= 1

2 1 00 !1 = ��2
��, �� = "��,		 �� , �� = "��, ��, �� = "��

Lie Algebra su(2)

3-dimensional

linear space

with 3·,·5

defining

representation

adjoint

representation

Basis:

+ 

linearize

at 6

6

exponential

map

� = " 77.8�9:
 = 6��;

⊂ + , + , , Hermitian (�- = �), trace=0

3D basis (Pauli):





�

�

<�< 

Basis: �� , �� , ��

�= = ���

Basis:

<�< 

�= = 3�, �5

 = cos �� !"sin �� 
!"sin�� cos �� 

cos �% !sin �%
 

sin�%
 cos �% 

exp!" �) 0
0 exp " �) 

> ? ! "@? + "@ !>
�

�′

> ? ! "@? + "@ !>
�

�′�� = 1
2 0 11 0 = ��2 ,		��= 1

2 0 !"" 0 = ��2 ,		��= 1
2 1 00 !1 = ��2

��, �� = "��,		 �� , �� = "��, ��, �� = "��

defining

representation

adjoint

representation

10 , 01

<′ = < <

<′

<′ = �< <

<′

Basis: �� , �� , ��



E. Sackinger: Groups in Physics (Draft Version 0.2, November 19, 2022)  

 

36 

 

How does the adjoint representation of the Lie algebra act on the matrix �? Given a one-parameter set 

of group elements, we can find the corresponding algebra element by taking the derivative with respect 

to the parameter, setting the parameter to zero (assuming zero parametrizes the identity), and 

multiplying the result by ". For example, for a group element that acts like < = 6��;�<, we find that 

the corresponding algebra element acts like "3(!"�)6��;�<5�9: = �<, which is of course exactly what 

we would expect. Now returning to the adjoint representation, where a group element acts like 

��� = 6��;��6�;�, we find that the corresponding algebra element acts like "3(!"�)6��;��6�;� +
6��;��("�)6�;�5�9: = �� ! �� = 3�, �5, where we used the product rule. Thus, the adjoint 

representation of the Lie algebra acts by means of the matrix commutator �′ = 3�, �5 (also written as 

A�;(�) = 3�, �5). Remarkably, the matrix commutator appears again! As a Lie bracket, it measures the 

(second-order) deviation from perfect commutation of two Lie-group elements. As the action of the 

adjoint representation, it transforms the Lie algebra. (The fact that the Lie-bracket operation must be 

preserved in the adjoint representation of the Lie algebra leads to the Jacobi identity.) 

To make all this more concrete, it is helpful to study how the adjoint representation of SU(2) acts on the 

corresponding 3-dimensional column vector. Given the (real) 3-dimensional column vector (?, @, >)B and 

the basis matrices ��, ��, and �� we can construct the matrix � = ?�� + @�� + >��. Spelled out 

explicitly, we have � = C > ? ! "@? + "@ !> D showing how the three vector components get “packed” into 

the matrix. Next, we act with  on this matrix producing �′ = ���. Finally, we “unpack” the 

transformed column vector (?′, @′, >′)B by comparing �′ with ?′�� + @′�� + >′��. Specifically, if we 

choose  = C6���/ 00 6��/ D and act with it on �, we get �′ = ��� = E > (? ! "@)6���
(? + "@)6�� !> F. 

After unpacking, we find that the three vector components transform like ?′ = ? cos . ! @ sin .,       

@′ = ? sin . + @ cos ., and >′ = >. What is this? It is a simple rotation of Cartesian coordinates by the 

angle . about the > axis! 

Next, let’s see how the adjoint representation of the Lie algebra su(2) acts on a 3-dimensional column 

vector. Again, we pack the vector into a matrix, then we act on it with the commutator, and finally we 

unpack the vector from the transformed matrix. Specifically, if we choose � = �� = ��/2, we get �′ =
3�, �5 = 3��/2, (?�� + @�� + >��)5 = ?"�� ! @"�� + 0 and, after unpacking, we find ?′ = !"@,  @′ = "?, 

and >′ = 0. Indeed, (?′, @′, >′)B is the displacement produced by a small rotation about the > axis (times 

"), in agreement with the transformation we found above! 

How do the basis generators look when they are rewritten to act on column vectors ?G instead of 

matrices �? In other words, given that the �� act like �′ = 3��, �5, what are the corresponding �H� that act 

like ?G′ = �H�?G or, in terms of components, ?I= = ∑ 3�H�5IK?KK ? Packing the vector components into the � 

matrix, � = ∑ ?K�KK  and �′ = ∑ ?I= �II , the basis generator �� in the adjoint representation acts like 

∑ ?I= �II = 3��, ∑ ?K�KK 5. Moving the sum out of the commutator, we can write ∑ ?I= �II = ∑ ?KK 3��, �K5. 
Using the definition of the structure constants, 3��, �K5 = ∑ L�KI�II , we get ∑ ?I= �II = ∑ ?KL�KI�IK,I . 

Identifying matching coefficients of �I, we find that the "th basis generator acts on the vector 

components like ?I= = ∑ L�KI?KK . Comparing this to ?I= = ∑ 3�H�5IK?KK , we discover that the "th basis 

generator �H� is made up of structure constants as follows: 3�H�5IK = L�KI! 


