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3.5 SU(2): Defining Representation with 3-Sphere Parameters; Group Topology 

Let’s explore one more parametrization of the same SU(2) matrix. The upper branch of the diagram 

shows again the matrix expression for the axis-angle parametrization from the previous example, 

whereas the lower branch shows an expression that is based on the new parameters �� = cos
�

�
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�
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�

�
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�
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. Using the fact that sin� � + cos� � = 1, the constraint �


� +

��
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� = 1 of the axis-angle parametrization translates to ��
� + �


� + ��
� + ��

� = 1 for the new 

parametrization. The transformation shown in the diagram can be rewritten more compactly in terms of 

Pauli matrices as 
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or, using vector notation, as ��(��, ��) = ��� − �(�� ∙ ��), where �� = (�
 , �� , ��)
� and �� = (�
 , �� , ��)

�. 

Just like in the previous example, both parametrizations describe the same set of transformation 

matrices and each element of the set lives in the same neighborhood. It’s the same representation 

parametrized in two different ways! 

This representation has again three free parameters. Somewhat sloppily, we listed them in the diagram 

as �
,	��, and �� implying that �� is determined by the constraint (this is not exactly true because the 

sign of �� remains ambiguous). The identity transformation is now given by �� = 1, �
 = 0, �� = 0, and 

�� = 0 (without ambiguity). Calculating the derivatives (times �) with respect to �
,	��, �� and 

evaluating them at the mentioned parameter values results in the basis generators �
, ��, and �� (no 

tricks required). After normalizing them such that their eigenvalues become +½ and −½, we arrive at our 

usual basis generators:  
 = �
/2,  � = ��/2,  � = ��/2. 

What do we learn from this new parametrization? The �# parameters do not represent rotation angles. 

But the fact that ��
� + �
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� = 1 means that the valid points in the parameter space form a 3-
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sphere, 01, which is the 4-dimensional generalization of a regular sphere (= 2-sphere), 0�. Because the 

group elements depend smoothly on these parameters, the group manifold also has the topology of a 3-

sphere. This is true regardless of the chosen parametrization: it is a property of the (abstract) group 

SU(2). We can think of the different parametrizations as different ways to put coordinates on the group 

manifold. 

How can we visualize the topology of a 3-sphere? Let’s take a step back and first consider the 2-sphere, 

that is, the regular sphere. An inflated rubber balloon is a good example of a 2-sphere. Now, let’s deflate 

the balloon, which will change its shape but not its topology. We end up with two round rubber sheets 

(= rubber disks) on top of each other, which are connected at their edges. Similarly, we can picture the 

topology of a 3-sphere as two 3D balls that are connected (identified) at their surfaces. This means that 

when we come out of one ball at a particular point on the surface, we immediately enter the other ball 

at the corresponding point. To make the identification of the two surfaces more natural, we may 

imagine the two balls as being “inside each other”, occupying the same space, but only being connected 

at the surface. That’s not easy to visualize, but we may picture a worm-eaten apple with two dense 

networks of holes that connect only at the surface of the apple (see Fig. 18 in George Gamow: “One Two 

Three … Infinity: Facts and Speculations of Science” for an illustration). 

Another way to visualize a 3-sphere is to imagine it passing through a 3D space such that we get a time 

sequence of 3D cuts of the 3-sphere. Let’s first do this with a 2-sphere passing through a 2D space: At 

first, we see just a dot. Then, the dot turns into a tiny circle that keeps on growing until it reaches its 

maximum size. Then, the circle starts shrinking again and eventually becomes just a dot and disappears. 

Now, returning to the 3-sphere passing through the 3D space: At first, we see just a dot. Then, the dot 

turns into a tiny 2-sphere that keeps on growing until it reaches its maximum size. Then, the 2-sphere 

starts shrinking again and eventually becomes just a dot and disappears. If we imagine this sequence of 

2-spheres layered on top of each other, as if printed out with a 3D printer, we end up with the two balls 

discussed above! 

Yet another way to visualize a 3-sphere is to cut it (take the intersection) with a (2-dimensional) plane 

that passes through the center of the 3-sphere. Let’s first try this out on a 2-sphere. If we cut a regular 

sphere in this way, we get (great) circles, which are all of the same size. Moreover, any two of these 

circles are connected at two points. Now, if we cut a 3-sphere in this way, we also get circles of the same 

size, but they are all completely disconnected. Any two of these circles twist around each other to form a 

link. The cutting up of a 3-sphere into such circles is known as a Hopf fibration [RtR, Ch. 15.4]. 

Mathematicians say that 01 is an 0' bundle over 0�, where 0' is a circle (= 1-sphere), which represents 

one of the fibers, and 0� is the 2-sphere, which corresponds to all possible ways the plane can be placed 

in the 4D space. Helpful illustrations and videos can be found on the Internet. 

The 3-sphere, just like the regular sphere, “closes back in on itself” rather than going “off to infinity”. It 

is said that the 3-sphere is a compact space. In contrast, Euclidean space is noncompact. Moreover, any 

loop embedded in the 3-sphere can be smoothly contracted to a point without getting “stuck”. It is said 

that the 3-sphere is a simply connected space (the same is true for the regular sphere). In contrast, the 

torus is not simply connected because a loop that wraps around it is permanently stuck. Both of these 

topological features play an important role in the representation theory of SU(2). 

  


