5.5 Spin(4): Representation with (Anti-)Self-Dual Parameters; so(4) $=\mathrm{so}(3) \oplus$ so(3)

Inspired by our experience with the self-dual and anti-self-dual tensor representations (see previous example), we are going to switch to a new set of parameters: instead of the plane-rotation parameters, $\theta_{x}, \theta_{y}, \theta_{z}, \phi_{x}, \phi_{y}, \phi_{z}$, we use the self-dual double-rotation parameters, $\vartheta_{x}^{+}=\theta_{x}+\phi_{x}, \vartheta_{y}^{+}=\theta_{y}+\phi_{y}$, $\vartheta_{z}^{+}=\theta_{z}+\phi_{z}$, and the anti-self-dual double-rotation parameters, $\vartheta_{x}^{-}=\theta_{x}-\phi_{x}, \vartheta_{y}^{-}=\theta_{y}-\phi_{y}, \vartheta_{z}^{-}=$ $\theta_{z}-\phi_{z}$. The parameter ϑ_{x}^{+}, for example, rotates simultaneously in the $y z$ and the $w x$ plane by the same amount (angle), whereas the parameter ϑ_{x}^{-}rotates by equal and opposite amounts in the same two planes. Note that these double rotations no longer rotate about a 2D plane but about a point, namely the origin.

To change the parameters, we start with the original 4D-rotation matrices (see the upper branch of the diagram) and substitute $\theta_{i}=\frac{1}{2}\left(\vartheta_{i}^{+}+\vartheta_{i}^{-}\right)$and $\phi_{i}=\frac{1}{2}\left(\vartheta_{i}^{+}-\vartheta_{i}^{-}\right)$into them. Then, we split each factor into two matrices, one depending only on ϑ_{x}^{+}and the other only on ϑ_{x}^{-}. Finally, we combine matrices that depend on the same parameter into a single one. A general 4D rotation can now be written as the product $\tilde{R}=R_{x}^{+}\left(\vartheta_{x}^{+}\right) \cdot R_{y}^{+}\left(\vartheta_{y}^{+}\right) \cdot R_{z}^{+}\left(\vartheta_{z}^{+}\right) \cdot R_{x}^{-}\left(\vartheta_{x}^{-}\right) \cdot R_{y}^{-}\left(\vartheta_{y}^{-}\right) \cdot R_{z}^{-}\left(\vartheta_{z}^{-}\right)$, where

$$
\begin{aligned}
& R_{x}^{+}=\left(\begin{array}{cccc}
\cos \vartheta_{x}^{+} / 2 & -\sin \vartheta_{x}^{+} / 2 & 0 & 0 \\
\sin \vartheta_{x}^{+} / 2 & \cos \vartheta_{x}^{+} / 2 & 0 & 0 \\
0 & 0 & \cos \vartheta_{x}^{+} / 2 & -\sin \vartheta_{x}^{+} / 2 \\
0 & 0 & \sin \vartheta_{x}^{+} / 2 & \cos \vartheta_{x}^{+} / 2
\end{array}\right), R_{x}^{-}=\left(\begin{array}{cccc}
\cos \vartheta_{x}^{-} / 2 & \sin \vartheta_{x}^{-} / 2 & 0 & 0 \\
-\sin \vartheta_{x}^{-} / 2 & \cos \vartheta_{x}^{-} / 2 & 0 & 0 \\
0 & 0 & \cos \vartheta_{x}^{-} / 2 & -\sin \vartheta_{x}^{-} / 2 \\
0 & 0 & \sin \vartheta_{x}^{-} / 2 & \cos \vartheta_{x}^{-} / 2
\end{array}\right), \\
& R_{y}^{+}=\left(\begin{array}{cccc}
\cos \vartheta_{y}^{+} / 2 & 0 & -\sin \vartheta_{y}^{+} / 2 & 0 \\
0 & \cos \vartheta_{y}^{+} / 2 & 0 & \sin \vartheta_{y}^{+} / 2 \\
\sin \vartheta_{y}^{+} / 2 & 0 & \cos \vartheta_{y}^{+} / 2 & 0 \\
0 & -\sin \vartheta_{y}^{+} / 2 & 0 & \cos \vartheta_{y}^{+} / 2
\end{array}\right), R_{y}^{-}=\left(\begin{array}{cccc}
\cos \vartheta_{y}^{-} / 2 & 0 & \sin \vartheta_{y}^{-} / 2 & 0 \\
0 & \cos \vartheta_{y}^{-} / 2 & 0 & \sin \vartheta_{y}^{-} / 2 \\
-\sin \vartheta_{y}^{-} / 2 & 0 & \cos \vartheta_{y}^{-} / 2 & 0 \\
0 & -\sin \vartheta_{y}^{-} / 2 & 0 & \cos \vartheta_{y}^{-} / 2
\end{array}\right),
\end{aligned}
$$

$$
R_{Z}^{+}=\left(\begin{array}{cccc}
\cos \vartheta_{z}^{+} / 2 & 0 & 0 & -\sin \vartheta_{z}^{+} / 2 \\
0 & \cos \vartheta_{z}^{+} / 2 & -\sin \vartheta_{z}^{+} / 2 & 0 \\
0 & \sin \vartheta_{Z}^{+} / 2 & \cos \vartheta_{Z}^{+} / 2 & 0 \\
\sin \vartheta_{z}^{+} / 2 & 0 & 0 & \cos \vartheta_{z}^{+} / 2
\end{array}\right), R_{z}^{-}=\left(\begin{array}{cccc}
\cos \vartheta_{z}^{-} / 2 & 0 & 0 & \sin \vartheta_{z}^{-} / 2 \\
0 & \cos \vartheta_{z}^{-} / 2 & -\sin \vartheta_{z}^{-} / 2 & 0 \\
0 & \sin \vartheta_{z}^{-} / 2 & \cos \vartheta_{z}^{-} / 2 & 0 \\
-\sin \vartheta_{z}^{-} / 2 & 0 & 0 & \cos \vartheta_{z}^{-} / 2
\end{array}\right) \text {, }
$$

as shown in the lower branch of the diagram. This product can be split into a self-dual double rotation $R^{+}=R_{x}^{+}\left(\vartheta_{x}^{+}\right) \cdot R_{y}^{+}\left(\vartheta_{y}^{+}\right) \cdot R_{z}^{+}\left(\vartheta_{z}^{+}\right)$and an anti-self-dual double rotation $R^{-}=R_{x}^{-}\left(\vartheta_{x}^{-}\right) \cdot R_{y}^{-}\left(\vartheta_{y}^{-}\right)$. $R_{z}^{-}\left(\vartheta_{z}^{-}\right)$. Amazingly, it turns out that these two types of rotations commute: $\tilde{R}=R^{+} \cdot R^{-}=R^{-} \cdot R^{+}$!

Taking the derivatives of the rotation matrix \tilde{R} with respect to the new parameters and setting them to zero, we find the following basis generators:

$$
\left.\begin{array}{l}
V_{x}^{+}=\frac{1}{2}\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right), V_{y}^{+}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right), V_{z}^{+}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 \\
1 & 0 & 0
\end{array} 0\right.
\end{array}\right),
$$

Note that these basis generators are just linear combinations of the old ones: $V_{x}^{+}=\frac{1}{2}\left(T_{x}+U_{x}\right), V_{y}^{+}=$ $\frac{1}{2}\left(T_{y}+U_{y}\right), V_{z}^{+}=\frac{1}{2}\left(T_{z}+U_{z}\right)$ and $V_{x}^{-}=\frac{1}{2}\left(T_{x}-U_{x}\right), V_{y}^{-}=\frac{1}{2}\left(T_{y}-U_{y}\right), V_{z}^{-}=\frac{1}{2}\left(T_{z}-U_{z}\right)$. Both bases span the same space, namely the space of all antisymmetric 4×4 matrices. The diagram shows the original basis generators in the upper branch and the new basis generators in the lower branch.

What are the commutation relations among the new basis generators V_{i}^{+}and V_{i}^{-}? Amazingly, all three V_{i}^{+}commute with all three V_{i}^{-}, that is, $\left[V_{i}^{+}, V_{j}^{-}\right]=0!$ In other words, the so(4) algebra falls apart into two independent parts [GTNut, Ch. I.3, Appendix 2, p. 83]. Moreover, the commutation relations among the V_{i}^{+}are the same as those among the V_{i}^{-}, namely $\left[V_{i}^{+}, V_{j}^{+}\right]=\varepsilon_{i j k} V_{k}^{+}$and $\left[V_{i}^{-}, V_{j}^{-}\right]=\varepsilon_{i j k} V_{k}^{-}$.
Whereas there were some similarities between the T_{i} and U_{i}, the V_{i}^{+}and V_{i}^{-}behave identically! Finally, the commutation relations $\left[V_{i}^{ \pm}, V_{j}^{ \pm}\right]=\varepsilon_{i j k} V_{k}^{ \pm}$are exactly those known from so(3). All of this can be summarized by writing so(4) $=\mathrm{so}(3) \oplus$ so(3), that is, the so(4) algebra is the direct sum of two so(3) algebras. (Note that we are now talking about the direct sum of two algebras, not two representations.)

It turns out that the new matrix \tilde{R} is not a representation of $\mathrm{SO}(4)$ but of $\operatorname{Spin}(4)$, its double cover. Note that the new parameters $\vartheta_{i}^{ \pm}$range from 0 to 720° and that $\vartheta_{i}^{ \pm}=0$ and $\vartheta_{i}^{ \pm}=360^{\circ}$ both parametrize the identity. By exponentiating $\operatorname{spin}(4)=\operatorname{so}(4)=\operatorname{so}(3) \oplus \operatorname{so}(3)=\operatorname{su}(2) \oplus \operatorname{su}(2)$, we find that $\operatorname{Spin}(4)$ is the direct product $\operatorname{SU}(2) \times S U(2)$, which explains why \widetilde{R} can be written as a product of two commuting factors. (The direct product and the direct sum are both based on the Cartesian product of the underlying sets. The product or sum in the name refers to the operation defined on these sets.) Finally, note that all representations of $\mathrm{SO}(4)$ are also representations of Spin(4).

For additional information about plane rotations and double rotations in four dimensions, see https://twitter.com/johncarlosbaez/status/1290324611222011908, https://en.wikipedia.org/wiki/Rotations in 4-dimensional Euclidean space; for visualizations, see http://eusebeia.dyndns.org/4d/vis/10-rot-1.)

