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5.10 Spin(4): The (½, ½) Representation; 4D Rotation with Two Quaternions 

 
When we discussed Sp(1) a while back, we found that there is a “dictionary” relating unit-length 

quaternions to SU(2) matrices, thus establishing the isomorphism Sp(1) = SU(2). Let’s use this 

“dictionary” to represent Spin(4) by two unit quaternions instead of two SU(2) matrices. 

The upper branch of the diagram shows again the defining representation of Spin(4) in which a real 4×4 

matrix � acts on a real 4-component vector �, while the lower branch shows the (½, ½) representation 

of Spin(4) in which two unit quaternions, �� and ��, act on a general quaternion � ∈ ℍ like �′ =

�����
��. This is a direct “translation” of the action 
� = ��
��

� = ��
��
�� from the previous example. 

The left unit quaternion depends only on the self-dual double-rotation angles ��
� and the right unit 

quaternion depends only on the anti-self-dual double-rotation angles ��
�; the transformation as a whole 

depends on all six parameters. Note that the two unit quaternions are (defining) representations of the 

two factors in the decomposition Spin(4) = Sp(1) × Sp(1). The Lie algebra consists of pairs of purely 

imaginary quaternions, �� and ��, that act on a general quaternion like �� = ��� − ���. This is 

analogous to the action 
� = ��
 + 
��
� = ��
 − 
�� from the previous example. 

The representation space can be understood as a 1-dimensional quaternionic vector space or as a 4-

dimensional real vector space. When interpreted as a 4D real vector space with the basis 1, �, �, � (see 

the diagram) the (½, ½) representation is equivalent to the defining representation of Spin(4).  

To check this equivalence with an example, we pick (again) the self-dual double rotation for which ��
� ≠

0 and ��
� = ��

� = ��
� = ��

� = ��
� = 0. In this case, the unit-quaternion pair is �� = exp($���

�) = 

exp(�/2 ∙ ��
�) = cos(��

�/2) + � sin(��
�/2) and �� = 1 and the general quaternion transforms like 

�� = [cos(��
�/2) + � sin(��

�/2)]�: 

�2
� + ���

� + ��3
� + ��4

� = [cos(��
�/2) + � sin(��

�/2)](�2 + ��� + ��3 + ��4). 
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Multiplying out the quaternions, simplifying �� = �, �� = ��, �3 = �1, and solving for the ���, we find 

that the vector �� transforms like 

QR
�2�����3��4� ST =

QU
Rcos ���/2 0 0 � sin ���/20 cos ���/2 � sin ���/2 00 sin ���/2 cos ���/2 0sin ���/2 0 0 cos ���/2 SV

T W�2���3�4
X. 

This transformation matrix exactly matches the self-dual double rotation matrix ��(���) from our earlier 

example! Repeating this exercise for the remaining five double rotations confirms that the two 

representations are equivalent. 

Just to be sure, let’s also check the action of some algebra elements. The generator pair for the above 

double rotation is �� = $� = �/2 and �� = 0, that is, the quaternion transforms like �′ = (�/2)�: �2� + ���� + ��3� + ��4� = (�/2)(�2 + ��� + ��3 + ��4). 
Solving for the ���, recovers the basis generator @�� from our earlier example: 

Q
R�2�����3��4� S

T = 12 W0 0 0 �10 0 �1 00 1 0 01 0 0 0 X W�2���3�4
X. 

Similarly, the generator pair �� = 0 and �� = $� = �/2 transforms the quaternion like �′ = ��(�/2): �2� + ���� + ��3� + ��4� = �(�2 + ��� + ��3 + ��4)(�/2). 
Once more, solving for the ���, recovers the basis generator @�� from our earlier example: 

Q
R�2�����3��4� S

T = 12 W 0 0 0 10 0 �1 00 1 0 0�1 0 0 0X W�2���3�4
X. 

What happens if we restrict ourselves to �� = �� = �? Expanding � in the transformation �′ = �����, 

reveals that this kind of restricted 4D transformation leaves �2 unchanged: �2� + ���� + ��3� + ��4� = �(�2 + ��� + ��3 + ��4)��� = �2 + �(��� + ��3 + ��4)���. 
In other words, the transformation describes a 3D rotation in the subspace ��, �3, �4! This agrees 

perfectly with what we have found earlier when discussing Sp(1): The 3-dimensional representation of 

Sp(1), which acts like �′ = ����� on purely imaginary quaternions (�2 = 0), describes 3D rotations! 

For a beautiful visualization of 4D and 3D rotations using quaternions, see 

https://www.3blue1brown.com/lessons/quaternions and https://eater.net/quaternions.   

 

  


