5.7 Spin(4): The $(1 / 2,0)$ and ($0,1 / 2$) Representations

So far, we have used the 1- and 3-dimensional representations of so(3) to construct various representations of so(4). But we know that so(3) also has a 2 -dimensional representation acting on complex 2 -vectors known as spinors. Now, we are going to use this fact to construct 2-dimensional spinor representations of so(4)!

Let's start with the $(1 / 2,0)$ representation of so(4). Remembering that su(2) is isomorphic to so(3), we use the 2 -dimensional (defining) representation $\left(j=1 / 2\right.$) of su(2), for the basis generators V_{i}^{+}, that is,

$$
V_{x}^{+}=\frac{1}{2}\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right), V_{y}^{+}=\frac{1}{2}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), V_{z}^{+}=\frac{1}{2}\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right),
$$

and the 1-dimensional representation $(j=0)$ for the basis generators V_{i}^{-}, that is,

$$
V_{x}^{-}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), V_{y}^{-}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), V_{z}^{-}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

These matrices satisfy all the commutation relations of so(4), including $\left[V_{i}^{+}, V_{j}^{-}\right]=0$.
Exponentiating this Lie algebra yields the unitary transformation $U_{L}=\exp \left(V_{x}^{+} \vartheta_{x}^{+}\right) \cdot \exp \left(V_{y}^{+} \vartheta_{y}^{+}\right) \cdot$ $\exp \left(V_{z}^{+} \vartheta_{z}^{+}\right)$, which we are already familiar with from $\mathrm{SU}(2)$. Note that this transformation depends only on the first three parameters, $\vartheta_{x}^{+}, \vartheta_{y}^{+}, \vartheta_{z}^{+}$; alternatively, if we go back to the plane-rotation parameters, it depends on $\theta_{x}, \theta_{y}, \theta_{z}$ and $\phi_{x}, \phi_{y}, \phi_{z}$ in the same way. We have found a 2-dimensional spinor representation of $\operatorname{Spin}(4)$ (see the upper branch of the diagram)!

The construction of the $(0,1 / 2)$ representation proceeds along the same lines. The main difference is that the unitary transformation U_{R} now depends only on the second three parameters $\vartheta_{x}^{-}, \vartheta_{y}^{-}, \vartheta_{z}^{-}$or, if expressed in terms of plane-rotation parameters, on $\theta_{x}, \theta_{y}, \theta_{z}$ and $\phi_{x}, \phi_{y}, \phi_{z}$ in opposite ways. We
have found another 2-dimensional spinor representation of Spin(4) (see the lower branch of the diagram)!

Are the $(1 / 2,0)$ and $(0,1 / 2)$ representations equivalent? No, despite looking very similar! It is not possible to turn them into each other with a similarity transformation because the respective matrices depend on two different subsets of the six parameters. Remember that the $(1,0)$ and $(0,1)$ representations were also inequivalent. In fact, all $(j, 0)$ and $(0, j)$ representations of Spin(4) are inequivalent, irreducible representations.

Given the ($1 / 2,0$) and ($0,1 / 2$) representations, we can easily construct a (reducible) 4-dimensional representation of Spin(4) by taking the direct sum $(1 / 2,0) \oplus(0,1 / 2)$. Its basis generators are

$$
\begin{aligned}
& V_{x}^{+}=\frac{1}{2}\left(\begin{array}{cccc}
0 & -i & 0 & 0 \\
-i & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), V_{y}^{+}=\frac{1}{2}\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), V_{z}^{+}=\frac{1}{2}\left(\begin{array}{cccc}
-i & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& V_{x}^{-}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & -i & 0
\end{array}\right), V_{y}^{-}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right), V_{z}^{-}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -i & 0 \\
0 & 0 & 0 & i
\end{array}\right) .
\end{aligned}
$$

This representation is different from the irreducible 4-dimensional representation that defines SO(4). We'll see how to construct the latter representation in a moment.

