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5.7 Spin(4): The (½, 0) and (0, ½) Representations 

So far, we have used the 1- and 3-dimensional representations of so(3) to construct various 

representations of so(4). But we know that so(3) also has a 2-dimensional representation acting on 

complex 2-vectors known as spinors. Now, we are going to use this fact to construct 2-dimensional 

spinor representations of so(4)!  

Let’s start with the (½, 0) representation of so(4). Remembering that su(2) is isomorphic to so(3), we use 

the 2-dimensional (defining) representation (� =	½) of su(2), for the basis generators ��
�, that is, 

��� = �
	 
 0 −

− 0 � , 	��� = �
	 
0 −1

1 0 � , 	��� = �
	 
− 0

0  �, 

and the 1-dimensional representation (� = 0) for the basis generators ��
�, that is, 

��� = 
0 0
0 0� , 		��� = 
0 0

0 0� , 		��� = 
0 0
0 0�. 

These matrices satisfy all the commutation relations of so(4), including [��
�, ��

�] = 0. 

Exponentiating this Lie algebra yields the unitary transformation �� = exp(������) ∙ exp(������) ∙
exp(������), which we are already familiar with from SU(2). Note that this transformation depends only 

on the first three parameters, ���, ���, ���; alternatively, if we go back to the plane-rotation parameters, 

it depends on !�, !�, !� and "�, "�, "� in the same way. We have found a 2-dimensional spinor 

representation of Spin(4) (see the upper branch of the diagram)! 

The construction of the (0, ½) representation proceeds along the same lines. The main difference is that 

the unitary transformation �# now depends only on the second three parameters ���, ���, ��� or, if 

expressed in terms of plane-rotation parameters, on !�, !�, !� and "�, "�, "� in opposite ways. We 
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have found another 2-dimensional spinor representation of Spin(4) (see the lower branch of the 

diagram)! 

Are the (½, 0) and (0, ½) representations equivalent? No, despite looking very similar! It is not possible 

to turn them into each other with a similarity transformation because the respective matrices depend 

on two different subsets of the six parameters. Remember that the (1, 0) and (0, 1) representations 

were also inequivalent. In fact, all (�, 0) and (0, �) representations of Spin(4) are inequivalent, 

irreducible representations. 

Given the (½, 0) and (0, ½) representations, we can easily construct a (reducible) 4-dimensional 

representation of Spin(4) by taking the direct sum (½, 0) ⨁ (0, ½). Its basis generators are 

��� � �	 A 0 � 0 0� 0 0 00 0 0 00 0 0 0B ,  ��� � �	 A0 �1 0 01 0 0 00 0 0 00 0 0 0B ,  ��� � �	 A� 0 0 00  0 00 0 0 00 0 0 0B, 
��� � �	 A0 0 0 00 0 0 00 0 0 �0 0 � 0 B ,  ��� � �	 A0 0 0 00 0 0 00 0 0 �10 0 1 0 B ,  ��� � �	 A0 0 0 00 0 0 00 0 � 00 0 0  B. 

This representation is different from the irreducible 4-dimensional representation that defines SO(4). 

We’ll see how to construct the latter representation in a moment. 

  


