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5.2 SO(4): Symmetric and Antisymmetric Tensor Representations 

 
Given the defining representation, we can construct a tensor-product representation from two copies of 

it. We have done this before for SU(2) and SO(3). In the case of SO(4), the tensor-product representation 

acts on 4×4 matrices and thus is sixteen dimensional. We know from SO(3) that the tensor-product 

representation is reducible: �⨂� = �⨁�⨁�. In the case of SO(4), the tensor product can be broken up 

into a 10-dimensional symmetric and a 6-dimensional antisymmetric representation. Moreover, the 

symmetric part can be broken up into a 9-dimensional traceless symmetric representation and a 1-

dimensional (trivial) representation for the trace. Thus, we can write �⨂� = �⨁	⨁�. 

The 10-dimensional symmetric and the 6-dimensional antisymmetric representation are illustrated in 

the upper and lower branch of the diagram, respectively. 

From SU(2) and SO(3), we know how the elements of the defining representation act on the tensor-

product space. The defining matrix, 
, of the group acts on the matrix, �, in the representation space 

according to �′ = 
�
 and the defining matrix, �, of the algebra acts on the matrix in the 

representation space according to �′ = �� + ��. Because 
 is orthogonal (
 = 
��), we can also 

write the group action as �′ = 
�
�� and because � is antisymmetric (� = −�), we can also write the 

algebra action as �′ = [�, �]. Thus, we see that the antisymmetric tensor representation and the adjoint 

representation (from the previous example) are the same thing! 

What distinguishes a symmetric from an antisymmetric matrix? A symmetric matrix remains unchanged 

when being transposed: � = �, we might as well call it the self-transpose. In contrast, an 

antisymmetric matrix changes its sign when being transposed: ��  = −�� , deserving the name anti-self-

transpose. This is analogous to the concepts of self-dual and anti-self-dual, which we will encounter in 

the next example. 

Let’s try to understand why the symmetric and antisymmetric tensors furnish separate representations. 

Geometrically, this means that the symmetric and antisymmetric parts of a tensor must represent two 
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��), determinant=1
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different objects. Indeed, we can interpret the symmetric tensor � as the quadratic hypersurface 

defined by the points (vectors) E that satisfy E�E � 1. For the tensor components shown in the upper 

branch of the diagram, this expands to AFG � BEG � CHG � DIG � 2<FE �  2=FH �  2>FI � 2?EH �
2,EI � 2@HI � 1. Moreover, we can interpret an antisymmetric tensor as a (generalized) oriented area 

element as follows. Given the antisymmetric tensor ��  (which has six free parameters in the 4D case), we 

can find two 4-component column vectors E and H, such that �� � EH � HE (known as the wedge 

product �� � E ∧ H). Then, ��  describes the area of the parallelogram enclosed by the two vectors along 

with its orientation in the ambient 4D space. When performing a rotation, the hypersurface and the 

area element transform as two separate objects. 

Formally, the fact that symmetric and antisymmetric tensors furnish independent representations 

means that if � � � holds, then so does �′ � �′ and if ��  � ��� holds, then so does ��′ � ���′, in 

other words, symmetric and antisymmetric tensors don’t mix under transformation. These if-then 

implications are easy to verify. The conclusion of the first statement, �′ � �′, can be expanded to 

(
�
) � 
�
. Applying the transpose-operator rule (��) � ��  to the left-hand side of the 

equality, we get 
(
�) � 
�
 and applying it once more, we get 
�
 � 
�
. Thus, given the 

premise, � � �, the conclusion is indeed true. Similarly, the conclusion of the second statement, ��′ �
���′, can be expanded to (
��
) � �
��
. Switching the transpose operators like before, we get 


�� 
 � �
��
. Once again, given the premise, ��  � ��� , the conclusion turns out to be true. 

Incidentally, the above reasoning did not make use of the orthogonality or the unit determinant of the 

matrix 
. Thus, the conclusion does not only apply to tensor-product representations of SO(n) but more 

generally to those of GL(n), that is, the group of invertible linear transformations (G = general, L = 

linear). 

So far, SO(4) appears to behave qualitatively just like SO(3). But here is something new: In the case of 

SO(3), �⨂� � �⨁�⨁� was the full decomposition into irreducible representations; in the case of 

SO(4), however, the 6-dimensional antisymmetric tensor representation can be broken up once more 

into two 3-dimensional representations known as the self-dual and anti-self-dual tensor 

representations! Thus, the full decomposition into irreducible representations is �⨂� = �⨁�⨁�N⨁�. 

 

 

  

 

  


